基于tensorflow的LSTM实战:MNIST分类

 

设置 RNN 的参数 

这次我们会使用 RNN 来进行分类的训练 (Classification). 会继续使用到手写数字 MNIST 数据集. 让 RNN 从每张图片的第一行像素读到最后一行, 然后再进行分类判断. 接下来我们导入 MNIST 数据并确定 RNN 的各种参数(hyper-parameters):

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(1)   # set random seed

# 导入数据
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# hyperparameters
lr = 0.001                  # learning rate
training_iters = 100000     # train step 上限
batch_size = 128            
n_inputs = 28               # MNIST data input (img shape: 28*28)
n_steps = 28                # time steps
n_hidden_units = 128        # neurons in hidden layer
n_classes = 10              # MNIST classes (0-9 digits)

接着定义 xy 的 placeholder 和 weightsbiases 的初始状况.

# x y placeholder
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])

# 对 weights biases 初始值的定义
weights = {
    # shape (28, 128)
    'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
    # shape (128, 10)
    'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
    # shape (128, )
    'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
    # shape (10, )
    'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}

定义 RNN 的主体结构 

接着开始定义 RNN 主体结构, 这个 RNN 总共有 3 个组成部分 ( input_layercelloutput_layer). 首先我们先定义 input_layer:

def RNN(X, weights, biases):
    # 原始的 X 是 3 维数据, 我们需要把它变成 2 维数据才能使用 weights 的矩阵乘法
    # X ==> (128 batches * 28 steps, 28 inputs)
    X = tf.reshape(X, [-1, n_inputs])

    # X_in = W*X + b
    X_in = tf.matmul(X, weights['in']) + biases['in']
    # X_in ==> (128 batches, 28 steps, 128 hidden) 换回3维
    X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])

接着是 cell 中的计算, 有两种途径:

  1. 使用 tf.nn.rnn(cell, inputs) (不推荐原因). 但是如果使用这种方法, 可以参考原因;
  2. 使用 tf.nn.dynamic_rnn(cell, inputs) (推荐). 这次的练习将使用这种方式.

因 Tensorflow 版本升级原因, state_is_tuple=True 将在之后的版本中变为默认. 对于 lstm 来说, state可被分为(c_state, h_state).

# 使用 basic LSTM Cell.
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
    init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) # 初始化全零 state

如果使用tf.nn.dynamic_rnn(cell, inputs), 我们要确定 inputs 的格式. tf.nn.dynamic_rnn 中的 time_major 参数会针对不同 inputs 格式有不同的值.

  1. 如果 inputs 为 (batches, steps, inputs) ==> time_major=False;
  2. 如果 inputs 为 (steps, batches, inputs) ==> time_major=True;
    outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=init_state, time_major=False)

最后是 output_layer 和 return 的值. 因为这个例子的特殊性, 有两种方法可以求得 results.

方式一: 直接调用final_state 中的 h_state (final_state[1]) 来进行运算:

    results = tf.matmul(final_state[1], weights['out']) + biases['out']

方式二: 调用最后一个 outputs (在这个例子中,和上面的final_state[1]是一样的):

    # 把 outputs 变成 列表 [(batch, outputs)..] * steps
    outputs = tf.unstack(tf.transpose(outputs, [1,0,2]))
    results = tf.matmul(outputs[-1], weights['out']) + biases['out']    #选取最后一个 output

在 def RNN() 的最后输出 result

    return results

定义好了 RNN 主体结构后, 我们就可以来计算 cost 和 train_op:

pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)

训练 RNN 

训练时, 不断输出 accuracy, 观看结果:

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# init= tf.initialize_all_variables() # tf 马上就要废弃这种写法
# 替换成下面的写法:
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    step = 0
    while step * batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
        sess.run([train_op], feed_dict={
            x: batch_xs,
            y: batch_ys,
        })
        if step % 20 == 0:
            print(sess.run(accuracy, feed_dict={
            x: batch_xs,
            y: batch_ys,
        }))
        step += 1

最终 accuracy 的结果如下:

0.1875
0.65625
0.726562
0.757812
0.820312
0.796875
0.859375
0.921875
0.921875
0.898438
0.828125
0.890625
0.9375
0.921875
0.9375
0.929688
0.953125

完整代码:

#!/usr/bin/env python
# encoding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

# hyperparameters
lr = 0.001
training_iters = 100000
batch_size = 128 # 每次训练只使用mnist中128个数据
# display_step = 10

n_inputs = 28 # Mnist data input(img shape:28X28) # 每次输入一行有28个像素点
n_steps = 28 # time steps,输出28次,因为有28行
n_hidden_units = 128 # neurons in hidden layer
n_classes = 10 # Mnist classes (0-9 digits)

# tf Graph input
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])

# define weight
weights = {
    # (28, 128)
    'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])),
    # (128, 10)
    'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes]))
}
biases = {
    # (128,)
    'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])),
    # (10,)
    'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ]))
}

def RNN(X, weights, biases):
    # hidden layer for input to cell
    # X (128 batch, 28 steps, 28 inputs)
    # 将X转换成(128*28,28 inputs)
    X = tf.reshape(X, [-1, n_inputs])
    # X_in (128 batch*28 steps, 128 hidden)
    X_in = tf.matmul(X, weights['in']) + biases['in']
    # x_in (128 batch, 28 steps, 128 hidden)
    X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units])

    # cell
    lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
    # lstm_cell = tf.nn.rnn_cell.LSTMCell(name='basic_lstm_cell', n_hidden_units, forget_bias=1.0, state_is_tuple=True)
    # lstm cell is divided into two parts (c_state, m_state)
    # c_state是细胞状态,存着过去的信息,m_state是当前细胞的输出,本来是要传给下一个细胞
    # rnn会保留每一步计算的结果,即state;LSTM分为主线c_state,和分线m_state;
    # 再init时会生成两个tuple,state_is_tuple=True就是判断生成的是否为元组。
    _init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)

    # lstm 就会产生两个state,一般的rnn只会产生一个m_state
    # outputs是一个list,每一步的结果都保存在这里,states仅为最后一个state
    # 有两种rnn:dynamic_rnn和rnn,dynamic_rnn优点在于对尺度不相同的数据处理上,会减少计算量
    # time_major判断时间步的维度是不是放在主要维度(stepps的位置,此处是1的位置,不是主要位置0,故而为False)
    outputs, states = tf.nn.dynamic_rnn(lstm_cell, X_in, initial_state=_init_state, time_major=False)

    # hidden layer for output as the final results
    # 此例中states[1]=outputs[-1]
    ## 方法一:
    # results = tf.matmul(states[1], weights,['out']) + biases['out']

    ## 方法二:
    # [1,01,2]表示第一个维度和第二个维度交换
    # outputs被unstack后,变成一列数值或者向量,列数等于steps的值,即cell的数量
    outputs = tf.unstack(tf.transpose(outputs, [1, 0, 2])) # state is the last outputs
    results = tf.matmul(outputs[-1], weights['out']) + biases['out']
    return results

pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op = tf.train.AdamOptimizer(lr).minimize(cost)

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    step = 0
    while step * batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs])
        sess.run([train_op], feed_dict={
            x: batch_xs,
            y: batch_ys,
        })
        if step % 20 == 0:
            print(sess.run(accuracy, feed_dict={
                x: batch_xs,
                y: batch_ys,
            }))
        step += 1



参考:https://www.bilibili.com/video/av16001891?p=33

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值