一维卷积filter_理解CNN卷积层与池化层计算

概述

深度学习中CNN网络是核心,对CNN网络来说卷积层与池化层的计算至关重要,不同的步长、填充方式、卷积核大小、池化层策略等都会对最终输出模型与参数、计算复杂度产生重要影响,本文将从卷积层与池化层计算这些相关参数出发,演示一下不同步长、填充方式、卷积核大小计算结果差异。

一:卷积层

卷积神经网络(CNN)第一次提出是在1997年,杨乐春(LeNet)大神的一篇关于数字OCR识别的论文,在2012年的ImageNet竞赛中CNN网络成功击败其它非DNN模型算法,从此获得学术界的关注与工业界的兴趣。毫无疑问学习深度学习必须要学习CNN网络,学习CNN就必须明白卷积层,池化层等这些基础各层,以及它们的参数意义,从本质上来说,图像卷积都是离散卷积,图像数据一般都是多维度数据(至少两维),离散卷积本质上是线性变换、具有稀疏与参数重用特征即相同参数可以应用输入图像的不同小分块,假设有3x3离散卷积核如下:

17f6a16bdc775f143afb09818ec176d0.png

假设有

5x5的图像输入块

步长为1(strides=1)

填充方式为VALID(Padding=VALID)

卷积核大小filter size=3x3

则它们的计算过程与输出如下

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一维卷积神经网络(1D Convolutional Neural Network, CNN)是卷积神经网络(Convolutional Neural Network, CNN)的一种简化版本,主要用于处理一数据,如时间序列数据,例如音频信号或文本。CNN通常用于二数据(图像)的分析,但在处理线性结构的数据时,一CNN同样有效。 卷积神经网络的核心特别之处在于以下几个方面: 1. **局部连接和权重共享**:CNN中的卷积层利用每个过滤器(filter)对输入数据的局部区域进行卷积操作,这使得模型能够学习到数据中的局部特征。同时,同一个过滤器在不同位置使用相同的权重,减少了参数数量,提高了模型的效率。 2. **池化层**:CNN包含池化层,如最大池化或平均池化,用于下采样,提取数据的主要特征,同时降低计算复杂度和过拟合风险。 3. **深度学习**:CNN能够处理大量的层级结构,每一层捕捉数据的不同抽象特征,从低级的边缘、纹理,到高级的颜色和形状。 4. **平移不变性**:由于卷积操作,CNN对于输入中的特征变化具有一定的鲁棒性,即使特征在空间上移动,模型也能识别。 5. **训练效率**:对于图像数据,CNN通过并行计算的优势,可以在GPU上快速训练,尤其是在大型数据集上。 对于一CNN来说,这些特性被调整为适应一输入,例如在一音乐数据或文本序列中检测模式和规律。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值