一维卷积filter_理解CNN卷积层与池化层计算

本文介绍了卷积神经网络(CNN)中的卷积层和池化层的计算,讨论了不同步长、填充方式对输出的影响。通过实例展示了卷积核大小、步长和填充方式如何改变输出尺寸。此外,还探讨了小卷积核的优势,以及如何通过一维卷积分解二维卷积来减少计算复杂度。最后,阐述了池化层的作用,包括均值池化和最大值池化,并给出了计算示例。
摘要由CSDN通过智能技术生成

概述

深度学习中CNN网络是核心,对CNN网络来说卷积层与池化层的计算至关重要,不同的步长、填充方式、卷积核大小、池化层策略等都会对最终输出模型与参数、计算复杂度产生重要影响,本文将从卷积层与池化层计算这些相关参数出发,演示一下不同步长、填充方式、卷积核大小计算结果差异。

一:卷积层

卷积神经网络(CNN)第一次提出是在1997年,杨乐春(LeNet)大神的一篇关于数字OCR识别的论文,在2012年的ImageNet竞赛中CNN网络成功击败其它非DNN模型算法,从此获得学术界的关注与工业界的兴趣。毫无疑问学习深度学习必须要学习CNN网络,学习CNN就必须明白卷积层,池化层等这些基础各层,以及它们的参数意义,从本质上来说,图像卷积都是离散卷积,图像数据一般都是多维度数据(至少两维),离散卷积本质上是线性变换、具有稀疏与参数重用特征即相同参数可以应用输入图像的不同小分块,假设有3x3离散卷积核如下:

17f6a16bdc775f143afb09818ec176d0.png

假设有

5x5的图像输入块

步长为1(strides=1)

填充方式为VALID(Padding=VALID)

卷积核大小filter size=3x3

则它们的计算过程与输出如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值