本地化差分隐私保护的实现机制(二)

      下面来谈谈这篇论文提出的新的解决机制:   

      分段机制: 

      该篇论文提出的第一个改进机制称为分段机制(PM),将t_{i} \in [-1,1]作为输入,并在[-C,C]中输出扰动值t_{i}^{*},其中:

                                            C=\frac{exp(\epsilon /2)+1}{exp(\epsilon /2)-1}
      t_{i}^{*}的概率密度函数(pdf)是分段常数函数,如下所示:

                                           

      其中:

                                          

       令pdf(t_{i}^{*})pdf(t_{i}^{*}=x|t_{i})的缩写。下图说明了t_{i} = 0,t_{i} = 0.5和t_{i} = 1情况下的pdf(t_{i}^{*})

              

       观察可知:

             a. 当t_{i} = 0时,pdf(t_{i}^{*})是对称的并且由三“段”组成,其中中心段(即t_{i}^{*} \in [\iota (t_{i}),r(t_{i})])具有较高的概率(比其他两个要高);

             b. 当t_{i}从0增加到1时,中心部分的长度保持不变(因为r(t_{i})-\iota (t_{i})=C-1),但是最右边的部分的长度(即t_{i}^{*} \in (r(t_{i}),C])减小;

             c. 当t_{i} = 1时,右边部分减小到0,t_{i} < 0的情况可以用类似的方式说明。

       以下算法显示了PM的伪代码:

                                             
       假设输入域是[-1,1]。通常,当输入域为t_{i} \in [-r,r]r > 0时,用户使用PM计算t_{i}^{'}=\frac{t_{i}}{r}来扰动t_{i}^{'},所以t_{i}^{'} \in [-1,1],然后按照上述算法计算出t_{i}^{*}并将r\times t_{i}^{*}提交给服务器,其中t_{i}^{*}表示算法输出的噪声值。可以证明r\times t_{i}^{*}t_{i}的无偏估计量。上述方法要求用户知道r

       这种方法是先将原始输入域扰动至规定输入域,再将扰动系数r和噪声值之积对外发布。
       以下引理确保了上述算法理论的可行性:

       引理1:该算法算法满足-本地差异隐私。另外,给定输入值t_{i},它会返回一个带有E[t_{i}^{*}] = t_{i}(期望)的噪声值t_{i}^{*},以及方差:

                                               
       通过引理1,PM返回一个噪声值t_{i}^{*},其方差最大(即t_{i} = 1时)为:

                                               
       下图中的紫色虚线说明了PM作为此函数的最坏情况方差:

                                             

       通过观察可知:

               a. 当\epsilon ≥ 1.29时,PM的最坏情况方差明显小于Duchi等人的解;

               b. 当\epsilon < 1.29时,PM的最差方差仅略大于后者,其中1.29是Duchi等人解决方案和PM方案在x坐标上的交点。

       可以证明,不管PM的值如何,PM的最坏方差都严格小于Laplace机制。与Laplace机制和Duchi等人的解决方案相比,PM是更可取的选择。
       此外,引理1还表明PM中的t_{i}^{*}随着|t_{i}|的减少而单调减少,这使得PM在输入数据的分布偏向小幅度值时特别有效。相反,Duchi等人的解决方案产生的噪声方差随|t_{i}|的减小而增加,见下方程:

                                             
       现在来看被数据收集者用来推断所有t_{i}的平均值的估计量\frac{1}{n}\sum_{i}^{n}t_{i}^{*}。该估计量的方差是t_{i}^{*}的平均方差的\frac{1}{n}

       基于此,以下引理建立了\frac{1}{n}\sum_{i}^{n}t_{i}^{*}的精度保证:

       引理2:Z=\frac{1}{n}\sum_{i=1}^{n}t_{i}^{*}X=\frac{1}{n}\sum_{i=1}^{n}t_{i}。 至少具有(1-β)概率, 。(论文省略了证明)
       备注:

               a. PM与在上一篇中描述的SCDF和Stairease mechanism具有某些相似之处,因为PM中的附加噪声也像SCDF和Stairease mechanism一样遵循分段恒定分布;

               b. 另一方面,PM和SCDF/Stairease mechanism之间存在两个关键差异:

                   a) SCDF和Staircase机制假定无界输入,并因此产生无界输出(即范围为(-\infty ,+\infty))。 相反,PM既有边界输入([-1,1])又有边界输出([-C,C]);

                   b) SCDF/Stairease mechanism的噪声分布由无数个独立于数据的“段”组成,而PM的输出分布由三个“段”组成,其长度和位置取决于输入数据。        

       下一篇讲另一种改动机制。

  • 0
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值