pytorch不同层指定不同的学习率

在构造优化器对象时,第一个参数不传递模型的所有参数,而是传递一个列表。将要更新的参数构造一个单独的参数组,其中包含属于它的参数列表。

# 实例
model = Model(input_size, hidden_size, output_size)

optimizer = optim.SGD([
    {'params': model.fc.parameters()},
    {'params': model.fc2.parameters(), 'lr': 1e-3}
], lr=1e-2, momentum=0.7)

这意味着model.fc的参数使用1e-2的默认学习率,model.fc2的参数使用1e-3的学习率,0.7的动量对所有参数都适用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值