数列极限求解:双数列递推问题

题型一:含其他数列的单数列递推

       这类问题形如

       其中的{b_{n}}往往性质已知,可以通过其性质在递推式就对其进行放缩,也可以在迭代的过程中将其保留,在最后对其放缩.

例1:

求解思路: 

先作差式,求单调性

a_{n}> 0,得出{y_{n}}递增.

由单调有界定理,只需找出{y_{n}}的上界即可证明{y_{n}}收敛.

由于\sum a_{n}收敛,故当n\rightarrow \infty时,a_{n}为无穷小量,若只是找其上界进行放缩,很可能因为精度丢失放缩不出来,这里做了个尝试,发现不行

归纳法放缩不行,故另寻他法 

回到之前的差式:

在求解递推数列问题中,相邻两项之差有许多用途 

首先是上文用到的,求解单调性

其次是构造压缩映像原理

还可以将其累加,得到数列的表达式或者放缩累加,得到数列的取值范围

这里就可以通过差项的放缩,得到{y_{n}}的上界.

例2: 

求解思路: 

由{b_{n}}有界,直接将其放缩为常数,再迭代,即可得证

题目本身对两数列的限制不多,且只需证有界,故大胆放缩即可. 

题型二:双数列互推

       这类问题形如:

       解决这类问题通常需要将两者的递推关系结合起来。

例1: 

求解思路:

观察递推形式,不难让人联想到均值不等式:

a_{n}\leq b_{n}n\geq 2)分别代入:

 

 

例2:

解题思路: 

递推关系为简单的线性关系,故考虑将其中一个数列消去:

到这里由压缩映像原理,可以说明{a_{n}}收敛,从而{b_{n}}也收敛,但要求出具体值,故累加

若两式作差可发现, 

例1,例2都是比较简单的闭区间套模型

例3:

解题思路:

该题的递推关系不像例1那么显然,可以通过不等式建立关系,也不像例2那么简单,可以直接消元,这里的递推关系是二次关系,倘若继续消元会使得表达式变复杂,不利于我们发现规律。这里通过实践说明:

将 {a_{n}}消去,在假设{b_{n}}收敛的情况下,我们仍面对着一个难以下手的高次方程,因此将两数列割裂开去看,反而变得复杂了。

无从下手时,不妨先挖掘一下基本信息

先通过各自的递推关系,找到各自的上下界

由于递推关系较复杂,难以发现其单调性,在未知单调性已知上下界的情况下多种方法失效,故首先尝试构造压缩映像

 没有构造出压缩映像,但成功将{a_{n}},{b_{n}}分离,构造出了良好的递推关系.

小结:

对于题型一,我们需充分利用夹在其中的数列的性质,对递推式进行放缩.

对于题型二,简单的形式我们直接能找出两数列间的关系,甚至直接消去其中一个,而对于复杂的递推形式,要从整体入微,一步步发掘数列的信息,可视具体情况,巧妙借助两项之差。

由于双数列递推的题比较少见,这里总结的规律可能不是很到位,希望未来能有更好的体会吧

 

 

 

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值