函数性质探究(一对一、介质性、连续性、单调性之间的关系)

题面:

探究一 :能否由介值性一一对应,推出函数f单调性

给出以下命题:

分析:

只需证明一种情况,另一种情况同理。结合介值性,利用反证法.

证明: 

反思:

由反函数的定义,f在(ab)上严格单调,则f在(ab)上是一对一

那么能否只由f一对一的性质,推断出f是严格单调的?

答案是否定的,我们可以构造反例

f在 (0,1)上的反函数为f本身,f是一对一的,但f不单调,也无介值性

 探究二 :能否由介值性一一对应,推出函数f连续

给出以下命题:

 分析:

延续证单调性的思路,假设f不连续,结合介值性,产生不一一对应的矛盾.

 证明:

反思:

 我们可以很容易的找出反例,f在(ab)上是一对一但不连续(如上一个反思的例子)

那么能否只由f的介值性,推断出f是连续的? 

答案是否定的, 由Darboux定理可知导函数有介值性但不一定连续,以下是经典反例

探究三: 介值性未知,单调性与连续性互证

一一对应+严格单调证明连续性 

虽然介值性未知,但该证明f的值域为某个开区间J为前提,否则逆映射可能为空集

证明: 

 一一对应+连续性证明严格单调

只需证明连续函数一定有介值性,沿用之前证明思路即可.

 命题:

分析: 

证明: 

思考 :

证明过程中的\delta为何要充分小?

因S可能是间断的,见如下草图

 

证明了闭区间上的连续函数的介值性后,可推广得到开区间上的介值性:

探究四:反函数是否也满足以上性质?

反函数的单调性,介值性:

反函数的连续性:

反函数的连续性证明与由单调性证明原函数连续性同理.

总结:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值