题面:
探究一 :能否由介值性和一一对应,推出函数
的单调性?
给出以下命题:
分析:
只需证明一种情况,另一种情况同理。结合介值性,利用反证法.
证明:
反思:
由反函数的定义,在(
,
)上严格单调,则
在(
,
)上是一对一的
那么能否只由一对一的性质,推断出
是严格单调的?
答案是否定的,我们可以构造反例
在 (0,1)上的反函数为
本身,
是一对一的,但
不单调,也无介值性
探究二 :能否由介值性和一一对应,推出函数
的连续性?
给出以下命题:
分析:
延续证单调性的思路,假设不连续,结合介值性,产生不一一对应的矛盾.
证明:
反思:
我们可以很容易的找出反例,在(
,
)上是一对一的但不连续(如上一个反思的例子)
那么能否只由的介值性,推断出
是连续的?
答案是否定的, 由Darboux定理可知导函数有介值性但不一定连续,以下是经典反例:
探究三: 介值性未知,单调性与连续性互证
一一对应+严格单调证明连续性:
虽然介值性未知,但该证明以的值域为某个开区间
为前提,否则逆映射可能为空集
证明:
一一对应+连续性证明严格单调:
只需证明连续函数一定有介值性,沿用之前证明思路即可.
命题:
分析:
证明:
思考 :
证明过程中的为何要充分小?
因S可能是间断的,见如下草图
证明了闭区间上的连续函数的介值性后,可推广得到开区间上的介值性:
探究四:反函数是否也满足以上性质?
反函数的单调性,介值性:
反函数的连续性:
反函数的连续性证明与由单调性证明原函数连续性同理.