高数考研归纳 - 极限与连续

点击此处查看高数其他板块总结

文章目录

Part 1 - 极限

1 无穷小比较

  设   α , β   \,\alpha,\beta\, αβ是自变量同一变化过程中的无穷小,

    (1) 若   lim ⁡ β α = 0 \,\lim\frac{\beta}{\alpha}=0 limαβ=0,则称   β   \,\beta\, β是比   α   \,\alpha\, α高阶的无穷小,记
β = o ( α ) \beta=o(\alpha) β=o(α)

  可以理解为   β   \,\beta\, β趋近于   0   \,0\, 0的速度比   α   \,\alpha\, α快,使得极限为   0 \,0 0.

    (2) 若   lim ⁡ β α = ∞ \,\lim\frac{\beta}{\alpha}=\infty limαβ=,则称   β   \,\beta\, β是比   α   \,\alpha\, α低阶的无穷小;

    (3) 若   lim ⁡ β α = C ≠ 0 \,\lim\frac{\beta}{\alpha}=C\neq 0 limαβ=C=0,则称   β   \,\beta\, β   α   \,\alpha\, α的同阶无穷小,记
β = O ( α ) \beta=O(\alpha) β=O(α)

    (4) 若   lim ⁡ β α k = C ≠ 0 \,\lim\frac{\beta}{\alpha^k}=C\neq 0 limαkβ=C=0,则称   β   \,\beta\, β   α   \,\alpha\, α   k   \,k\, k阶无穷小;

    (5) 若   lim ⁡ β α = 1 \,\lim\frac{\beta}{\alpha}=1 limαβ=1,则称   β   \,\beta\, β   α   \,\alpha\, α的等价无穷小,记   α ∼ β \,\alpha\sim\beta αβ.

  注意
    (1) 并非任意两个无穷小都可以进行比阶.

  例如:   x → 0   \,x\to0\, x0的无穷小   x 2 sin 1 x   \,x^2\text{sin}\frac{1}{x}\, x2sinx1   x 2   \,x^2\, x2 ( x → 0 )   (x\to 0)\, (x0),二者无法比阶,因为   lim ⁡ x → 0 sin 1 x   \,\lim\limits_{x\to0}\text{sin}\frac{1}{x}\, x0limsinx1不存在.

    (2) f ( x )   f(x)\, f(x)   g ( x )   \,g(x)\, g(x)的高阶无穷小,并不意味着   g ( x )   \,g(x)\, g(x)就是   f ( x )   \,f(x)\, f(x)的低阶无穷小.

  例如:当   x → 0   \,x\to 0\, x0时, x 2 sin 1 x   x^2\text{sin}\frac{1}{x}\, x2sinx1   x   \,x\, x的高阶无穷小,但反过来不无法比阶.

2 无穷大比较

  当   n → ∞   \,n \to \infty\, n时,下列数列无穷大的阶数由低到高排序:
     ln ⁡ n \ln{n} lnn n α ( α > 0 ) n^{\alpha}(\alpha >0) nα(α>0) n β ( β > α > 0 ) n^{\beta}(\beta>\alpha>0) nβ(β>α>0) a n ( a > 1 ) a^n(a>1) an(a>1) n n n^n nn

  当   x → + ∞   \,x \to +\infty\, x+时,下列函数无穷大的阶数由低到高排序:
     ln ⁡ x \ln{x} lnx x α ( α > 0 ) x^{\alpha}(\alpha >0) xα(α>0) x β ( β > α > 0 ) x^{\beta}(\beta>\alpha>0) xβ(β>α>0) a x ( a > 1 ) a^x(a>1) ax(a>1) x x x^x xx

  注意
    (1) 数列极限的   n → ∞   \,n \to \infty\, n的无穷专指正无穷(因为   n   \,n\, n在高等数学中专指自然数),而函数极限的   x → + ∞   \,x\to+\infty\, x+必须标明正负号.
    (2) 无穷大的比较可以转换为无穷小的比较:恒不为零的无穷小的倒数是无穷大.
    (3) 读者需要区分无穷大无界的差异. 对于任意大的正数   M \,M M,无穷大是邻域内任意一点取值对应函数值均大于   M \,M M;无界则是存在一点取值对应函数值均大于   M \,M M.

3 无穷小的计算规则

  (1) 有限个无穷小的还是无穷小.
  (2) 有限个无穷小的乘积还是无穷小.
  (3) 有界函数与无穷小的乘积是无穷小.

  第 (3) 点非常重要!其实使用十分广泛. 比如判断形如   x a sin 1 x \,x^a\text{sin}\frac{1}{x} xasinx1   x a cos 1 x   ( x → 0 )   \,x^a\text{cos}\frac{1}{x}\,(x\to0)\, xacosx1(x0)这样带振荡间断点的极限.

  (4) 基本运算规则 ( m m m n   n\, n为正整数):

o ( x m ) ± o ( x n ) = o ( x min { m , n } )        ( m ≠ n ) o(x^m)\pm o(x^n)=o(x^{\text{min}\{m,n\}})\;\;\;({\color{Red}m\neq n}) o(xm)±o(xn)=o(xmin{m,n})(m=n)

  次数小的说了算. 同理,无穷小比较,则是次数大的说了算.

o ( x m ) ⋅ o ( x n ) = o ( x m + n ) o(x^m)\cdot o(x^n)=o(x^{m+n}) o(xm)o(xn)=o(xm+n) x m ⋅ o ( x n ) = o ( x m + n ) x^m\cdot o(x^n)=o(x^{m+n}) xmo(xn)=o(xm+n) o ( x m ) = o ( k x m ) = k ⋅ o ( x m )        ( k ≠ 0 ) o(x^m)=o(kx^m)=k\cdot o(x^{m})\;\;\;(k\neq 0) o(xm)=o(kxm)=ko(xm)(k=0)

  系数并不影响无穷小的阶数.

o ( x m ) x n = o ( x m − n )        ( m ⩾ n ) \frac{o(x^m)}{x^n}=o(x^{m-n})\;\;\;({\color{Red}m\geqslant n}) xno(xm)=o(xmn)(mn)

  (5) 两个同阶无穷小相加减,其结果的阶数大于或等于原无穷小的阶数.

  当   x → 0   \,x\to0\, x0时,
  两个同阶无穷小相减的情况
    a. 与原无穷小阶数同: 2 x   2x\, 2x   x   \,x\, x都是   x   \,x\, x的同阶无穷小, 2 x − x ∼ x 2x-x\sim x 2xxx
    b. 比原无穷小阶数大: x   x\, x   sin x   \,\text{sin}x\, sinx都是   x   \,x\, x的同阶无穷小, x − sin x ∼ 1 6 x 3 x-\text{sin}x\sim\frac{1}{6}x^3 xsinx61x3.
  两个同阶无穷小相加的情况
    a. 与原无穷小阶数同: 2 x   2x\, 2x   x   \,x\, x都是   x   \,x\, x的同阶无穷小, 2 x + x ∼ 3 x 2x+x\sim 3x 2x+x3x
    b. 比原无穷小阶数大: 2 x 3 − x   2x^3-x\, 2x3x   x − x 3   \,x-x^3\, xx3都是   x   \,x\, x的同阶无穷小, ( 2 x 3 − x ) + ( x − x 3 ) ∼ x 3 (2x^3-x)+(x-x^3)\sim x^3 (2x3x)+(xx3)x3.

  (6) (无穷小的导数) 设   f ( x )   \,f(x)\, f(x)   x = a   \,x=a\, x=a   n   \,n\, n阶可导,若   x → a   \,x\to a\, xa时,   f ( x )   \,f(x)\, f(x)   ( x − a )   \,(x-a)\, (xa)   n   ( n ⩾ 2 )   \,n\,(n\geqslant 2)\, n(n2)阶无穷小,则   f ′ ( x )   \,f'(x)\, f(x)   ( x − a )   \,(x-a)\, (xa)   n − 1   \,n-1\, n1阶无穷小.

  (7) (无穷小的原函数) 设   f ( x )   \,f(x)\, f(x)连续,若 x → a   x\to a\, xa时,   f ( x )   \,f(x)\, f(x)   ( x − a )   \,(x-a)\, (xa)   n   \,n\, n阶无穷小,则   ∫ a x f ( t ) d t   \,\int^x_af(t)\text{d}t\, axf(t)dt   ( x − a )   \,(x-a)\, (xa)   n + 1   \,n+1\, n+1阶无穷小.

4 等价无穷小

  基础
x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ e x − 1 ∼ ln ⁡ ( 1 + x ) x\sim \sin{x} \sim \tan{x} \sim \arcsin{x} \sim \arctan{x} \sim e^x-1 \sim \ln(1+x) xsinxtanxarcsinxarctanxex1ln(1+x) 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos{x} \sim \frac{1}{2}x^2 1cosx21x2 1 − cos ⁡ a x ∼ a 2 x 2 1-\cos^{a}{x} \sim \frac{a}{2}x^2 1cosax2ax2 ( 1 + x ) a − 1 ∼ a x ( a ≠ 0 ) (1+x)^a-1 \sim ax(a\neq 0) (1+x)a1axa=0 a x − 1 ∼ x ln ⁡ a ( a > 0   且   a ≠ 1 ) a^x-1 \sim x \ln{a}(a>0\,且\,a\neq1) ax1xlnaa>0a=1

  进阶
x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 x-\ln{(1+x)} \sim \frac{1}{2}x^2 xln(1+x)21x2 x − sin x ∼ 1 6 x 3 x-\text{sin}x\sim\frac{1}{6}x^3 xsinx61x3 x − arcsin x ∼ − 1 6 x 3 x-\text{arcsin}x\sim-\frac{1}{6}x^3 xarcsinx61x3 x − tan x ∼ − 1 3 x 3 x-\text{tan}x\sim-\frac{1}{3}x^3 xtanx31x3 x − arctan x ∼ 1 3 x 3 x-\text{arctan}x\sim\frac{1}{3}x^3 xarctanx31x3

  进阶部分适当记忆即可,可以提升求极限的速度. 如果忘记,可以通过洛必达法则或麦克劳林公式推出. 尤其是后面四个,容易混淆:   sin \,\text{sin} sin arcsin   \text{arcsin}\, arcsin的分母是   3 !   \,3!\, 3!,而   tan \,\text{tan} tan arctan   \text{arctan}\, arctan的分母是   3 \,3 3. 正负号的记忆读者可以思考   y = x   \,y=x\, y=x与三角函数图像之间的大小关系.

  注意
    (1) x x x sin ⁡ x \sin{x} sinx tan ⁡ x \tan{x} tanx arcsin ⁡ x \arcsin{x} arcsinx arctan ⁡ x   \arctan{x}\, arctanx任意两者之差为   3   \,{\color{Red} 3} \, 3阶无穷小.
    (2) 对分式使用等价无穷小时,如果分子分母中出现加减运算,需确保使用前后分子与分母的精度相同 (相关证明感兴趣的读者可以参考其他文章).

  精度无穷小的阶数,后文会继续使用这种说法.
  这一点非常重要,常常是初学者感到疑惑的地方. 考虑下面这个极限:
lim ⁡ x → 0 x − sin x x 3 \lim_{x\to 0}\frac{x-\text{sin}x}{x^3} x0limx3xsinx

  由于   x − sin x   \,x-\text{sin}x\, xsinx是加减运算,所以不能直接通过等价无穷小使之成为:
lim ⁡ x → 0 x − x x 3 \lim_{x\to 0}\frac{x-{\color{Red}x}}{x^3} x0limx3xx

  这是由于分母   x 3   \,x^3\, x3是一个   3   \,3\, 3阶无穷小,因此分子也必须是   3   \,3\, 3阶无穷小. 上面这种替换使得分子精度变为   1 \,1 1,不可取.

  实际上,通过麦克劳林公式展开或记忆常见等价无穷小可知:   x − sin x ∼ 1 6 x 2 \,x-\text{sin}x\sim\frac{1}{6}x^2 xsinx61x2,因此正确解法为:
lim ⁡ x → 0 x − sin x x 3 = lim ⁡ x → 0 1 6 x 3 x 3 = 1 6 \lim_{x\to 0}\frac{x-\text{sin}x}{x^3}=\lim_{x\to 0}\frac{\frac{1}{6}x^3}{x^3}=\frac{1}{6} x0limx3xsinx=x0limx361x3=61

    (3) 当无穷小作为因子时,在求极限时可以放心使用等价无穷小替换,无需考虑精度.
    (4) 对于变积分限函数,积分限与被积函数均可使用等价无穷小,如:
∫ 0 e x 2 − 1 sin ⁡ t 2 t d t ∼ ∫ 0 x 2 t d t = x 4 2 \int_{0}^{e^{x^2}-1}\frac{\sin{t^2}}{t}\text{d}t \sim \int_{0}^{x^2}t\text{d}t=\frac{x^4}{2} 0ex21tsint2dt0x2tdt=2x4

5 重要极限

lim ⁡ Δ → 0 sin ⁡ Δ Δ = 1 \lim\limits_{\Delta \to 0}{\frac{\sin{\Delta}}{\Delta}=1} Δ0limΔsinΔ=1 lim ⁡ Δ → 0 ( 1 + Δ ) 1 Δ = e \lim\limits_{\Delta \to 0}{(1+\Delta)^{\frac{1}{\Delta}}}=e Δ0lim(1+Δ)Δ1=e lim ⁡ n → ∞ n n = 1 , lim ⁡ x → + ∞ x 1 x = 1 \lim\limits_{n \to \infty}{\sqrt[n]{n}=1},\lim\limits_{x \to +\infty}{x^{\frac{1}{x}}=1} nlimnn =1x+limxx1=1 lim ⁡ x → 0 x x = 1 \lim\limits_{x \to0}{x^x=1} x0limxx=1 Δ → 0 ⇒ { ln ⁡ ( 1 + Δ ) ∼ Δ , e Δ − 1 ∼ Δ    , ( 1 + Δ ) a ∼ a Δ      ( a 为常数 ) . \Delta \rightarrow 0 \Rightarrow \begin{cases} \ln(1+\Delta)\sim \Delta,\\ e^{\Delta}-1 \sim \Delta\;,\\ (1+\Delta)^a \sim a\Delta\;\; (a\text{为常数}).\\ \end{cases} Δ0ln(1+Δ)ΔeΔ1Δ(1+Δ)aaΔ(a为常数).

6 几个重要不等式

  最最最基本的不等式
0 < a a + b < 1 , 0 < b a + b < 1        ( a ,   b > 0 ) 0<\frac{a}{a+b}<1,0<\frac{b}{a+b}<1\;\;\;(a,\,b>0) 0<a+ba<10<a+bb<1(a,b>0)

  均值不等式
2 1 a + 1 b ⩽ a b ⩽ a + b 2 ⩽ a 2 + b 2 2      ( a , b > 0 ) \frac{2}{\frac{1}{a}+\frac{1}{b}}\leqslant\sqrt{ab}\leqslant\frac{a+b}{2}\leqslant \sqrt{\frac{a^2+b^2}{2}}\;\;(a,b>0) a1+b12ab 2a+b2a2+b2 (a,b>0) n ∑ i = 1 n 1 x i ⩽ ∏ i = 0 n x i n ⩽ 1 n ∑ i = 1 n x i ⩽ 1 n ∑ i = 1 n x i 2      ( x i > 0 ) \frac{n}{\sum\limits_{i=1}^n\frac{1}{x_i}}\leqslant\sqrt[n]{\prod_{i=0}^nx_i}\leqslant\frac{1}{n}\sum_{i=1}^nx_i\leqslant \sqrt{\frac{1}{n}\sum_{i=1}^nx_i^2} \;\;(x_i>0) i=1nxi1nni=0nxi n1i=1nxin1i=1nxi2 (xi>0)

  均值不等式在元素相等时取等号.
  其规律是(从左至右):调和平均值   ⩽   \,\leqslant\, 几何平均值   ⩽   \,\leqslant\, 算术平均值   ⩽   \,\leqslant\, 平方平均值.

  自然对数、自然指数不等式 x 1 + x < ln ⁡ ( 1 + x ) < x    ( x > 0 ) \frac{x}{1+x} < \ln(1+x) < x\; (x>0) 1+xx<ln(1+x)<x(x>0) e x < 1 + x    ( x ≠ 0 ) e^x<1+x\;(x \neq 0) ex<1+x(x=0)

  三角函数不等式 sin ⁡ x < x    ( x > 0 ) \sin{x}<x\;(x>0) sinx<x(x>0) sin ⁡ x < x < tan ⁡ x    ( 0 < x < π 2 ) \sin{x}<x<\tan{x}\;(0<x<\frac{\pi}{2}) sinx<x<tanx(0<x<2π) tan ⁡ x < x < sin ⁡ x    ( − π 2 < x < 0 ) \tan{x}<x<\sin{x}\;(-\frac{\pi}{2}<x<0) tanx<x<sinx(2π<x<0)

  绝对值不等式 ∣ ∣ x ∣ − ∣ y ∣ ∣ ⩽ ∣ x ± y ∣ ⩽ ∣ x ∣ + ∣ y ∣ \big||x|-|y|\big|\leqslant\big|x\pm y\big|\leqslant|x|+|y| xyx±yx+y

  取整不等式 x − 1 < [ x ] ⩽ x x-1<[x]\leqslant x x1<[x]x [ x ] ⩽ x < [ x ] + 1 [x]\leqslant x<[x]+1 [x]x<[x]+1

7 洛必达法则

  洛必达法则涉及求导运算,关于求导相关内容读者可见一元微分学.

  洛必达法仅针对   0 0   \,\frac{0}{0}\, 00型和   ∞ ∞   \,\frac{\infty}{\infty}\, 型两种未定式极限的计算方法. 其他类型的未定式极限不能直接使用洛必达法则.下 面仅以   0 0   \,\frac{0}{0}\, 00型为例, ∞ ∞   \frac{\infty}{\infty}\, 型使用方法和条件类似.

   ∞ ⋅ 0   \infty\cdot 0\, 0型极限可转化为二者之一再使用洛必达法则.

  结论
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) \color{Blue}\lim\limits_{x\to a} \frac{f(x)}{g(x)}=\lim\limits_{x\to a} \frac{f'(x)}{g'(x)} xalimg(x)f(x)=xalimg(x)f(x)

  条件

    (1) lim ⁡ x → a f ( x ) = lim ⁡ x → a g ( x ) = 0 \lim\limits_{x\to a} f(x)=\lim\limits_{x\to a} g(x)=0 xalimf(x)=xalimg(x)=0

  条件(1)保证未定式为   0 0   \,\frac{0}{0}\, 00型.

    (2) 在点   a   \,a\, a的去心邻域内, f ′ ( x ) f'(x) f(x) g ′ ( x )   g'(x)\, g(x)均存在,且   g ′ ( x ) ≠ 0 \,g'(x)\neq 0 g(x)=0

  条件(2)是保证   lim ⁡ x → a f ( x ) g ( x )   \,\lim\limits_{x\to a} \frac{f(x)}{g(x)}\, xalimg(x)f(x)存在. 若   f ′ ( x ) \,f'(x) f(x) g ′ ( x )   g'(x)\, g(x)任一不存在或   g ′ ( x ) = 0 \,g'(x)=0 g(x)=0 lim ⁡ x → a f ′ ( x ) g ′ ( x )   \lim\limits_{x\to a} \frac{f'(x)}{g'(x)}\, xalimg(x)f(x)便没有意义. 如: lim ⁡ x → ∞ x + cos x x \lim\limits_{x\to \infty}\frac{x+\text{cos}x}{x} xlimxx+cosx

    (3) lim ⁡ x → a f ′ ( x ) g ′ ( x ) = A \lim\limits_{x\to a} \frac{f'(x)}{g'(x)}=A xalimg(x)f(x)=A,其中   A   \,A\, A可为实数或   ∞ \,\infty .

  条件(3)非常重要,在处理抽象函数时极易忽视. 极限很有可能满足条件(1)和条件(2),但不满足条件(3),导致无法使用洛必达法则.
  
  例如: f ( x )   f(x)\, f(x)   x = 0   \,x=0\, x=0的某邻域内可导,且   lim ⁡ x → 0 f ( x ) x 2 = 2 \,\lim\limits_{x\to 0}\frac{f(x)}{x^2}=2 x0limx2f(x)=2,问能够推出   lim ⁡ x → 0 f ′ ( x ) x = 4   \,\lim\limits_{x\to 0}\frac{f'(x)}{x}=4\, x0limxf(x)=4
  答案是不能的!题目中的极限虽然满足条件(1)和条件(2),但条件(3)却不一定满足. 虽然   f ′ ( x )   \,f'(x)\, f(x)存在,但   lim ⁡ x → 0 f ′ ( x ) x   \,\lim\limits_{x\to 0}\frac{f'(x)}{x}\, x0limxf(x)仍可能不存在 (具体来说, f ′ ( x )   f'(x)\, f(x)在除以   x   \,x\, x以后可能导致极限振荡不存在,即使得极限既非实数也非   ∞ \,\infty ). 请读者一定理解清楚这一点!

  注意
    (1) 洛必达法则建议在计算的中后期使用. 对复杂式子直接使用洛必达,可能导致求导运算量非常巨大.
    (2) 洛必达法则一定要注意使用条件. 尤其小心条件(3). 当题目仅给出导函数存在条件,但并未说明导函数连续或导函数极限存在时,慎用洛必达法则.
    (3) 只要条件满足,洛必达法则可以连续多次使用.

lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m   \lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, xx0lim(xx0)mf(x)问题总结

  如前所述,洛必达法则的条件(3)非常容易忽视. 而在选择题中,经常需要对形如   lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m   \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, xx0lim(xx0)mf(x)的条件进行处理. 下面给出如何快速确定在不同导数条件下,对该极限能使用多少次洛必达法则.

  问题:对于   lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m \,\color{Blue}\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m} xx0lim(xx0)mf(x),仅满足条件   f ( x 0 ) = f ′ ( x 0 ) = . . . = f ( n ) ( x 0 ) = 0 \,\color{Blue}f(x_0)=f'(x_0)=...=f^{(n)}(x_0)=0 f(x0)=f(x0)=...=f(n)(x0)=0,可以使用多少次洛必达法则?(使用多少次洛必达法则不会失效)

  若题目还满足其他额外条件,后续结论不适用. 条件   f ( x 0 ) = f ′ ( x 0 ) = . . . = f ( n ) ( x 0 ) = 0   \,f(x_0)=f'(x_0)=...=f^{(n)}(x_0)=0\, f(x0)=f(x0)=...=f(n)(x0)=0保证了洛必达   0 0   \,\frac{0}{0}\, 00型未定式的条件.

  结论
    (1) 设   f ( x )   \,f(x)\, f(x) n   n\, n连续可导 (即导函数连续).

      case 1:若   n ⩾ m \,\color{Blue}n\geqslant m nm,则可对   lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m   \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, xx0lim(xx0)mf(x)使用   m   \,m\, m次洛必达法则,即:
lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m = lim ⁡ x → x 0 f ′ ( x ) m ⋅ ( x − x 0 ) m − 1 = . . . = lim ⁡ x → x 0 f ( m ) ( x ) m ! = f ( m ) ( x ) m ! \lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}=\lim\limits_{x\to x_0}\frac{f'(x)}{m\cdot (x-x_0)^{m-1}}=...=\lim\limits_{x\to x_0}\frac{f^{(m)}(x)}{m!}=\frac{f^{(m)}(x)}{m!} xx0lim(xx0)mf(x)=xx0limm(xx0)m1f(x)=...=xx0limm!f(m)(x)=m!f(m)(x)

      case 2:若   n < m \,\color{Blue}n< m n<m,则对   lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m   \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, xx0lim(xx0)mf(x)一次洛必达法则也不能使用!

  为便于记忆,可将   n ⩾ m   \,n\geqslant m\, nm理解为“上面压得住下面”, n < m   n< m\, n<m理解为“上面压不住下面”.

    (2) 设   f ( x )   \,f(x)\, f(x) n   n\, n可导.

      case 1:若   n − 1 ⩾ m \,\color{Blue}n-1\geqslant m n1m,则可对   lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m   \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, xx0lim(xx0)mf(x)使用   m   \,m\, m次洛必达法则.

  因为   f ( x )   \,f(x)\, f(x)   n   \,n\, n阶可导,则   f ( x )   \,f(x)\, f(x)   n − 1   \,n-1\, n1阶导数必连续. 转换为结论(1)中 case 1 的情况.

      case 2:若   n = m \,\color{Blue}n = m n=m,则可对   lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m   \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, xx0lim(xx0)mf(x)使用   m − 1   \,m-1\, m1次洛必达法则,即: lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m = lim ⁡ x → x 0 f ′ ( x ) m ⋅ ( x − x 0 ) m − 1 = . . . = lim ⁡ x → x 0 f ( m − 1 ) ( x ) m ! ⋅ ( x − x 0 ) \lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}=\lim\limits_{x\to x_0}\frac{f'(x)}{m\cdot (x-x_0)^{m-1}}=...=\lim\limits_{x\to x_0}\frac{f^{(m-1)}(x)}{m!\cdot (x-x_0)} xx0lim(xx0)mf(x)=xx0limm(xx0)m1f(x)=...=xx0limm!(xx0)f(m1)(x)

  若要继续求出   n ( = m )   \,n(=m)\, n(=m)阶导数,需要额外再使用一次导数定义进行计算:
f ( n ) ( x 0 ) = lim ⁡ x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 f^{(n)}(x_0)=\lim\limits_{x\to x_0}\frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0} f(n)(x0)=xx0limxx0f(n1)(x)f(n1)(x0)

    case 3:若   n + 1 ⩽ m \,\color{Blue}n+1\leqslant m n+1m,则对   lim ⁡ x → x 0 f ( x ) ( x − x 0 ) m   \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, xx0lim(xx0)mf(x)一次洛必达法则也不能使用.

8 求解不定型极限的基本思路

  有的极限可以直接看出或直接代入求出,但有的极限代入后则会出现无穷或使分式无意义的情况,后者这种极限就称为不定型极限(或称未定式). 不定型极限必须先进行变形才能计算. 具体地,不定定极限包括以下七种类型:

   0 0   \frac{0}{0}\, 00型、 ∞ ∞   \frac{\infty}{\infty}\, 型、 1 ∞   1^{\infty}\, 1型、 ∞ ⋅ 0   \infty\cdot0\, 0型、 ∞ − ∞   \infty-\infty\, 型、 ∞ 0   \infty^0\, 0型、 0 0   0^0\, 00型.

  不同的类型对应不同的求法,请读者逐一进行掌握.

  注意未定式中出现的   0 \,0 0 1   1\, 1   ∞   \,\infty\, 都是趋向值. 七种类型中没有的   ∞ ∞   \,\infty^\infty\, ∞ + ∞ \infty+\infty +   0 ∞   \,0^\infty\, 0都是定型式.   ∞ ∞ = ∞ \,\infty^\infty=\infty = ∞ + ∞ = ∞ \infty+\infty=\infty += 0 ∞ = ( 1 ∞ ) ∞ = 1 ∞ ∞ = 1 ∞ = 0 0^\infty=(\frac{1}{\infty})^\infty=\frac{1}{\infty^\infty}=\frac{1}{\infty}=0 0=(1)=1=1=0.

(一) 0 0   \frac{0}{0}\, 00

  利用等价无穷小洛必达法则泰勒展开求解.

  三个必须形成条件反射的转换

     ( 1 ) (1) (1)    u ( x ) v ( x ) ⇒ e v ( x ) ln ⁡ u ( x ) u(x)^{v(x)} \Rightarrow e^{v(x){\ln{u(x)}}} u(x)v(x)ev(x)lnu(x)

     ( 2 ) (2) (2)   ln ⁡ ( . . . ) ⇒ ln ⁡ ( 1 + Δ ) ∼ Δ    ( → 0 ) \ln(...) \Rightarrow \ln(1+\Delta)\sim \Delta\;( \rightarrow 0) ln(...)ln(1+Δ)Δ(0)

     ( 3 ) (3) (3)   ( . . . ) − 1 ⇒ { e Δ − 1 ∼ Δ    , ( Δ → 0 ) ( 1 + Δ ) a ∼ a Δ    , ( Δ → 0 , a 为常数 ) . (...) - 1 \Rightarrow \begin{cases} e^{\Delta}-1 \sim \Delta\;,& (\Delta \rightarrow 0)\\ (1+\Delta)^a \sim a\Delta\;,& (\Delta \rightarrow 0,a\text{为常数}).\\ \end{cases} (...)1{eΔ1Δ,(1+Δ)aaΔ,(Δ0)(Δ0a为常数).

  注意:未定式   0 0   \,\frac{0}{0}\, 00是指分子分母都趋于   0 \,0 0,此时极限可能存在. 但如果确定分母等于   0   \,0\, 0(或分母在极限趋近于   0   \,0\, 0的过程中等于   0 \,0 0),会使得分式无意义,极限一定不存在. 请读者注意两种情况的差异!即趋于   0   \,0\, 0   0   \,0\, 0之间的差异.

  为更深入理解这种差异,读者可以尝试分析以下等价无穷小的错误原因:
x → 0 , sin ( x 2 sin 1 x ) ∼ x 2 sin 1 x    × x\to 0,\text{sin}(x^2\text{sin}\frac{1}{x})\sim x^2\text{sin}\frac{1}{x}\;{\color{Red}\times} x0sin(x2sinx1)x2sinx1×

(二) ∞ ∞   \frac{\infty}{\infty}\,

  三种基本思路

     ( 1 ) (1) (1) 分子分母都是多项式:
lim ⁡ x → + ∞ b n x n + b n − 1 x n − 1 . . . + b 0 a m x m + a m − 1 x m − 1 . . . + a 0 = { 0 , n < m , b n a m , n = m , ∞ , n > m . \lim\limits_{x \to +\infty}{\frac{b_nx^n+b_{n-1}x^{n-1}...+b_0}{a_mx^m+a_{m-1}x^{m-1}...+a_0}}= \begin{cases} 0,& {n < m,}\\ \frac{b_n}{a_m},& n = m,\\ \infty,& n > m.\\ \end{cases} x+limamxm+am1xm1...+a0bnxn+bn1xn1...+b0=0,ambn,,n<m,n=m,n>m.

     ( 2 ) (2) (2) 通过倒代换转换为 0 0 \frac{0}{0} 00型.

  倒代换即令   t = 1 x \,t=\frac{1}{x} t=x1,这就使得当   x → ∞   \,x\to\infty\, x时,   t → 0 \,t\to0 t0. 倒代换在高等数学中使用非常基础和广泛的手法,读者一定要熟悉!

     ( 3 ) (3) (3) 洛必达法则.

(三) ∞ ⋅ 0   \infty\cdot0\, 0

  思路
     ( 1 ) (1) (1) 对未定式中   ∞   \,\infty\, 的部分进行倒代换,转化为 0 0 \frac{0}{0} 00型.
     ( 2 ) (2) (2) 对未定式中   0   \,0\, 0的部分进行倒代换,转化为 ∞ ∞ \frac{\infty}{\infty} 型.

(四) 1 ∞   1^{\infty}\, 1

  固定套路
    凑 ( 1 + Δ ) 1 Δ (1+\Delta)^{\frac{1}{\Delta}} (1+Δ)Δ1,由重要极限: lim ⁡ Δ → 0 ( 1 + Δ ) 1 Δ = e \lim\limits_{\Delta \to 0}{(1+\Delta)^{\frac{1}{\Delta}}}=e Δ0lim(1+Δ)Δ1=e,得

     lim ⁡ Δ → 0 ( 1 + Δ 1 ) 1 Δ 2 = lim ⁡ Δ → 0 ( 1 + Δ 1 ) 1 Δ 1 ⋅ Δ 1 Δ 2 = e lim ⁡ Δ → 0 Δ 1 Δ 2 \lim\limits_{\Delta \to 0}{(1+\Delta_1)^{\frac{1}{\Delta_2}}}=\lim\limits_{\Delta \to 0}{(1+\Delta_1)^{\frac{1}{\Delta_1}\cdot\frac{\Delta_1}{\Delta_2}}}=e^{\lim\limits_{\Delta \to 0}{\frac{\Delta_1}{\Delta_2}}} Δ0lim(1+Δ1)Δ21=Δ0lim(1+Δ1)Δ11Δ2Δ1=eΔ0limΔ2Δ1

  例: lim ⁡ x → 0 ( 1 − 2 x 2 ) 1 x sin ⁡ x = lim ⁡ x → 0 { [ ( 1 + ( − 2 x 2 ) ] 1 ( − 2 x 2 ) } 1 x sin ⁡ x ⋅ ( − 2 x 2 ) = e − lim ⁡ x → 0 2 x sin ⁡ x = e − 2 \lim\limits_{x \to 0}{(1-2x^2)^{\frac{1}{x\sin{x}}}}=\lim\limits_{x \to 0}{\{[(1 +(-2x^2)]^{\frac{1}{(-2x^2)}}}\}^{\frac{1}{x \sin{x}}·(-2x^2)}={e}^{-\lim\limits_{x \to 0}\frac{2x}{\sin{x}}}=e^{-2} x0lim(12x2)xsinx1=x0lim{[(1+(2x2)](2x2)1}xsinx1(2x2)=ex0limsinx2x=e2  读者熟练以后可跳过中间步骤:
lim ⁡ x → 0 ( 1 − 2 x 2 ) 1 x sin ⁡ x = e lim ⁡ x → 0 1 x sin ⁡ x ⋅ ( − 2 x 2 ) = e − lim ⁡ x → 0 2 x sin ⁡ x = e − 2 \lim\limits_{x \to 0}{(1-2x^2)^{\frac{1}{x\sin{x}}}}=e^{\lim\limits_{x \to 0}{\frac{1}{x \sin{x}}·(-2x^2)}}={e}^{-\lim\limits_{x \to 0}\frac{2x}{\sin{x}}}=e^{-2} x0lim(12x2)xsinx1=ex0limxsinx1(2x2)=ex0limsinx2x=e2

(五) ∞ − ∞   \infty-\infty\,

  思路
    通分使之成为分式,转化为   0 0   \,\frac{0}{0}\, 00型、 ∞ ∞   \frac{\infty}{\infty}\, 型之一.

    无法直接通分,也要努力创造出分式 (通过倒代换等手段),比如下面这一典型类型:
ln ⁡ Δ − x = ln ⁡ Δ − ln ⁡ e x = ln ⁡ Δ e x \ln{\Delta}-x=\ln{\Delta}-\ln{e^x}=\ln\frac{\Delta}{e^x} lnΔx=lnΔlnex=lnexΔ

  例. 求下列极限:
lim ⁡ x → + ∞ [ ln ( 1 + e x ) − x ] . \lim\limits_{x\to+\infty}[\text{ln}(1+e^x)-x]. x+lim[ln(1+ex)x].

  解:原式   = lim ⁡ x → + ∞ [ ln ( 1 + e x ) − ln e x ] = lim ⁡ x → + ∞ ln 1 + e x e x = 0 \,=\lim\limits_{x\to+\infty}[\text{ln}(1+e^x)-\text{ln}e^x]=\lim\limits_{x\to+\infty}\text{ln}\frac{1+e^x}{e^x}=0 =x+lim[ln(1+ex)lnex]=x+limlnex1+ex=0

(六) ∞ 0   \infty^0\, 0型、 0 0   0^0\, 00

  思路
    利用   u ( x ) v ( x ) = e v ( x ) ⋅ ln ⁡ u ( x )   \,u(x)^{v(x)} = e^{v(x)\cdot\ln{u(x)}}\, u(x)v(x)=ev(x)lnu(x)转化为其他类型求解.

(七) 泰勒展开 (麦克劳林公式)

  泰勒展开求解不定型极限是通法. 本质上,等价无穷小和非零因子代入都是对泰勒展开的应用. 泰勒展开求解需要记忆常见的麦克劳林公式,计算过程略显繁琐. 当极限中出现   sin ⁡ x 、 cos ⁡ x 、 e x 、 ln ⁡ ( 1 + x ) 、 ( 1 + x ) a   \,\sin{x}、\cos{x}、e^x、\ln{(1+x)}、(1+x)^a\, sinxcosxexln(1+x)(1+x)a等堆叠不好处理,或分子分母精度(阶数)不一致时,可考虑使用泰勒展开求解.

  常见麦克劳林公式
e x = 1 + x + x 2 2 ! + . . . + x n n ! + o ( x n ) e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}+o(x^n) ex=1+x+2!x2+...+n!xn+o(xn) sin ⁡ x = x − x 3 3 ! + x 5 5 ! − . . . + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + o ( x 2 n + 1 ) \sin{x} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - ... + (-1)^{n}\frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) sinx=x3!x3+5!x5...+(1)n(2n+1)!x2n+1+o(x2n+1) cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − . . . + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) \cos{x} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - ... + (-1)^{n}\frac{x^{2n} }{(2n)!}+ o(x^{2n}) cosx=12!x2+4!x4...+(1)n(2n)!x2n+o(x2n) ln ⁡ ( 1 + x ) = x − x 2 2 + . . . + ( − 1 ) n − 1 x n n + o ( x n ) \ln(1+x) = x - \frac{x^2}{2} + ... + (-1)^{n-1} \frac{x^{n}}{n}+o(x^n) ln(1+x)=x2x2+...+(1)n1nxn+o(xn) 1 1 − x = 1 + x + x 2 + . . . + x n + o ( x n ) \frac{1}{1-x} = 1+x+x^2+...+x^n+o(x^n) 1x1=1+x+x2+...+xn+o(xn) 1 1 + x = 1 − x + x 2 − . . . + ( − 1 ) n x n + o ( x n ) \frac{1}{1+x} = 1-x+x^2-...+(-1)^{n}x^n+o(x^n) 1+x1=1x+x2...+(1)nxn+o(xn) ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + . . . (1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3+... (1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+... arctan ⁡ x = x − x 3 3 + x 5 5 − . . . + ( − 1 ) n ( 2 n + 1 ) x 2 n + 1 + o ( x 2 n + 1 ) \arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - ... + \frac{(-1)^{n}}{(2n+1)}x^{2n+1} + o(x^{2n+1}) arctanx=x3x3+5x5...+(2n+1)(1)nx2n+1+o(x2n+1) tan ⁡ x = x + x 3 3 + o ( x 3 ) \tan{x} = x+\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3) arcsin ⁡ x = x + x 3 3 ! + o ( x 3 ) \arcsin{x} = x+\frac{x^3}{3!}+o(x^3) arcsinx=x+3!x3+o(x3)

  注意
    (1) 使用麦克劳林展开必须保证   x → 0 \,x\to 0 x0.
    (2) 同样注意   sin x \,\text{sin}x sinx tan x \text{tan}x tanx arcsin x \text{arcsin}x arcsinx arctan x   \text{arctan}x\, arctanx的麦克劳林公式容易混淆,记忆方法同等价无穷小.

   sin \text{sin} sin arcsin   \text{arcsin}\, arcsin的分母的分母是   3 !   \,3!\, 3!,而   tan \,\text{tan} tan arctan   \text{arctan}\, arctan   3 \,3 3. 正负号的记忆读者可以思考   y = x   \,y=x\, y=x与三角函数图像之间的大小关系.

    (3) ( 1 + x ) a   (1+x)^a\, (1+x)a展开式中的系数看上去很复杂,其实就是二项式公式的组合数系数: C a 0 C^0_a Ca0 C a 1 C^1_a Ca1 C a 2 C^2_a Ca2

  解题方法:
    泰勒展开的难点在于阶数的确定. 需保证分子分母经过展开以后同阶 (分子分母最低次幂同阶),再进行计算.

  例:设   x   \,x\, x是无穷大量,用麦克劳林公式展开   1 − x 6 3   \,\sqrt[3]{1-x^6}\, 31x6 得到等价无穷小:
1 − x 6 3 = ( 1 − x 6 ) 1 3 = − x 2 ( 1 − 1 x 6 ) 1 3 \sqrt[3]{1-x^6}=(1-x^6)^{\frac{1}{3}}=-x^2(1-\frac{1}{x^6})^{\frac{1}{3}} 31x6 =(1x6)31=x2(1x61)31    参照公式: ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + . . . (1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3+... (1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+... 1 − x 6 3 ~ − x 2 ⋅ ( 1 − 1 3 x 6 + o ( x − 6 ) ) \sqrt[3]{1-x^6}~-x^2\cdot(1-\frac{1}{3x^6}+o(x^{-6})) 31x6 x2(13x61+o(x6))

(八) 非零因子代入

  当发现欲求极限的函数中存在某个因子,将极限趋近的值代入该因子,因子不为零. 那么就可以直接代入计算. 如:
lim ⁡ x → 0 sin x − x cos x x 3 cos x = lim ⁡ x → 0 sin x − x cos x x 3 \lim\limits_{x \to 0}\frac{\text{sin}x-x\text{cos}x}{x^3\color{Red}\text{cos}x}=\lim\limits_{x \to 0}\frac{\text{sin}x-x\text{cos}x}{x^3\color{Red}} x0limx3cosxsinxxcosx=x0limx3sinxxcosx

  条件
    (1) 必须是一个完整的因子 (不是多项式的一部分、不是幂指函数的一部分);
    (2) 因子代入后不等于   0   \,0\, 0.

  本质
    非零因子代入和等价无穷小本质上都是泰勒展开求极限的重要运用. 不同的是,等价无穷小要求因子代入后等于   0 \,0 0,而非零因子代入要求因子代入后不等于   0 \,0 0.

  重要技巧
    非零因子应优先使用,能代入计算就先代入计算!

9 求解不定型极限的重要技巧

提取因子

  提取出的因子可使用等价无穷小或非零因子代入等方法求出. 下面列举几个类型:

    型 A A A:  tan ⁡ x − sin ⁡ x ⇒ tan ⁡ x   ( 1 − cos ⁡ x ) \tan{x}-\sin{x} \Rightarrow \tan{x}\,(1-\cos{x}) tanxsinxtanx(1cosx)

    型 B B B:  e Δ − e x ⇒ e x ( e Δ − x − 1 ) e^{\Delta}-e^{x} \Rightarrow e^x( e^{\Delta-x} - 1) eΔexex(eΔx1)

  以后见多项式中出现   e Δ \,e^\Delta eΔ,要条件反射般地考虑提取因子.

    型 C C C:  x x − Δ x ⇒ x x ( 1 − ( Δ x ) x ) x^{x}-\Delta^{x} \Rightarrow x^x(1-(\frac{\Delta}{x})^x) xxΔxxx(1(xΔ)x)

    型 D D D:  x n + Δ n ⇒ x n ( 1 + Δ x n ) n \sqrt[n]{x^n+\Delta}\Rightarrow \sqrt[n]{x^n(1+\frac{\Delta}{x^n})} nxn+Δ nxn(1+xnΔ)

分子分母有理化

   ? ± ? \sqrt{?}\pm \sqrt{?} ? ±?   o r   \,or\, or ?   ±   ? \sqrt{?}\,\pm \,? ? ±?   o r   \,or\, or ? ± ? ?\pm \sqrt{?} ?±? ⇒ \Rightarrow 分子或分母有理化,之后通常可以通过非零因子代入先计算一部分.

抓大放小

  当   x → ∞   \,x \to \infty\, x时,起决定性作用的是多项式中最高阶的无穷大量. 如:
lim ⁡ x → + ∞ 3 x x + 2 x + x − x = 3 2 . \lim_{x \to +\infty}{\frac{ 3\sqrt{x}}{\sqrt{x+2\sqrt{x}}+\sqrt{x-\sqrt{x}}}}=\frac{3}{2}. x+limx+2x +xx 3x =23.

  注意
    (1) 在   ln ⁡   \,\ln\, ln括号里面的多项式不能直接抓大放小,而要想办法提出一个因子拆开后再考虑.

  例如:
lim ⁡ x → + ∞ ln ⁡ ( x 2 + x + 1 ) ln ⁡ ( x 10 + 2 x 2 − 1 ) = lim ⁡ x → + ∞ ln ⁡ x 2 ( 1 + 1 x ) ln ⁡ x 4 ( 1 + 3 x 2 + 1 x 4 ) = lim ⁡ x → + ∞ 2 ln ⁡ x + ln ⁡ ( 1 + 1 x ) 4 ln ⁡ x + ln ⁡ ( 1 + 3 x 2 + 1 x 4 ) = 1 2 \lim\limits_{x \to +\infty}{\frac{\ln(x^2+x+1)}{\ln(x^{10}+2x^2-1)}}=\lim\limits_{x \to +\infty}{\frac{\ln{x^2(1+\frac{1}{x})}}{\ln{x^4}{(1+\frac{3}{x^2}+\frac{1}{x^4})}}}=\lim\limits_{x \to +\infty}{\frac{2\ln{x}+{\ln{(1+\frac{1}{x}})}}{4\ln{x}+{\ln(1+\frac{3}{x^2}+\frac{1}{x^4})}}}=\frac{1}{2} x+limln(x10+2x21)ln(x2+x+1)=x+limlnx4(1+x23+x41)lnx2(1+x1)=x+lim4lnx+ln(1+x23+x41)2lnx+ln(1+x1)=21

    (2) 尤其小心   x → − ∞   \,x\to-\infty\, x或出现根号时,抓大放小各部分的符号.

  负数换元:在抓大放小时, x → − ∞   x\to-\infty\, x需要额外注意符号,容易出错. 可按照以下方法进行负数换元:
      令   x = − t \,x=-t x=t,则当   x → − ∞   \,x\to-\infty\, x时, t → + ∞ t\to+\infty t+.

各种拆项法

  型 A A A − − - -   1   \,1\, 1   1 \,1 1
    通常会产生两个   2   \,2\, 2阶无穷小,如:
lim ⁡ x → 0 e x 2 +   cos ⁡ x   −   2 x arcsin ⁡ 2 x = lim ⁡ x → 0 e x 2 − 1 +   cos ⁡ x   −   1 x arcsin ⁡ 2 x . \lim\limits_{x \to 0}{\frac{e^{x^2} +\,\cos{x}\,-\,2}{x\arcsin2x}}=\lim\limits_{x \to 0}{\frac{e^{x^2} -1+\,\cos{x}\,-\,1}{x\arcsin2x}}. x0limxarcsin2xex2+cosx2=x0limxarcsin2xex21+cosx1.

  型 B B B − − - -   x   \,x\, x   x \,x x (减其他无穷小)
    通常会产生两个   3   \,3\, 3阶无穷小,如: x e x − sin ⁡ x ⇒ ( x e x − x ) + ( x − sin ⁡ x ) . xe^x-\sin{x} \Rightarrow (xe^x-x)+(x-\sin{x}). xexsinx(xexx)+(xsinx).    读者可再考虑下面这种连拆:
lim ⁡ x → 0 tan ⁡ ( sin ⁡ x ) − sin ⁡ ( tan ⁡ x ) x 3 = lim ⁡ x → 0 tan ⁡ ( sin ⁡ x ) − sin ⁡ x x 3 + lim ⁡ x → 0 sin ⁡ x − tan ⁡ x x 3 + lim ⁡ x → 0 tan ⁡ x − sin ⁡ ( tan ⁡ x ) x 3 \lim\limits_{x \to 0}\frac{\tan(\sin{x})-\sin(\tan{x})}{x^3}=\lim\limits_{x \to 0}\frac{\tan{(\sin{x})-\sin{x}}}{x^3}+\lim\limits_{x \to 0}\frac{\sin{x}-\tan{x}}{x^3}+\lim\limits_{x \to 0}\frac{\tan{x}-\sin{(\tan{x})}}{x^3} x0limx3tan(sinx)sin(tanx)=x0limx3tan(sinx)sinx+x0limx3sinxtanx+x0limx3tanxsin(tanx)

   ⋆ \color{Red}\star C C C − − - - 拆  1 − cos ⁡ x ⋅ cos ⁡ 2 x . . . 1-\cos{x}·\cos{2x}... 1cosxcos2x...
    比较特殊的拆法,需要记忆!如:
lim ⁡ x → 0 1 − cos ⁡ x ⋅ cos ⁡ 2 x ⋅ cos ⁡ 3 x x 2 = lim ⁡ x → 0 1 − cos ⁡ x x 2 + lim ⁡ x → 0 cos ⁡ x ⋅ 1 − cos ⁡ 2 x x 2 + lim ⁡ x → 0 cos ⁡ x ⋅ cos ⁡ 2 x ⋅ 1 − cos ⁡ 3 x x 2 \lim\limits_{x \to 0}{\frac{1-\cos{x}·\cos{2x}·\cos{3x}}{x^2}}=\lim\limits_{x \to 0}{\frac{1-\cos{x}}{x^2}}+\lim\limits_{x \to 0}{\cos{x} ·\frac{1-\cos{2x}}{x^2}}+\lim\limits_{x \to 0}{\cos{x}·\cos{2x}·\frac{1-\cos{3x}}{x^2}} x0limx21cosxcos2xcos3x=x0limx21cosx+x0limcosxx21cos2x+x0limcosxcos2xx21cos3x

  型 D D D − − - -   ln ⁡ \,\ln ln ln ⁡ ( a ⋅ b ) = ln ⁡ a + ln ⁡ b \ln{(a\cdot b)} = \ln{a} + \ln{b} ln(ab)=lna+lnb
    很容易被忽视的拆法,不一定都用   ln ⁡ ( 1 + Δ ) ~ Δ   \,\ln(1+\Delta)~\Delta\, ln(1+Δ)Δ处理.

  型 E E E − − - - 因式分解,拆开分母根据阶数分配.

  比如平方差公式: a 2 − b 2 = ( a − b ) ⋅ ( a + b ) a^{2}-b^{2} = (a-b)\cdot(a+b) a2b2=(ab)(a+b)

加减运算

  如果多项式的一部分可以直接求出,可大胆地拆出!即:

    对于极限   lim ⁡ ( f ± g ) \,\lim(f \pm g) lim(f±g),若   lim ⁡ f   \,\lim f\, limf存在(或   lim ⁡ g   \,\lim g\, limg存在),则必有:
lim ⁡ ( f ± g ) = lim ⁡ f ± lim ⁡ g \lim(f \pm g)=\lim f\pm \lim g lim(f±g)=limf±limg

  如:
lim ⁡ x → 0 [ ( x + 1 ) arctan ⁡ x − π 2 x ] = π 2 + lim ⁡ x → 0 [ x ( arctan ⁡ x − π 2 ) ] = π 2 \lim\limits_{x \to 0}{[(x+1)\arctan{x}-\frac{\pi}{2}x]}=\frac{\pi}{2}+\lim\limits_{x \to 0}{[x(\arctan{x}-\frac{\pi}{2})]}=\frac{\pi}{2} x0lim[(x+1)arctanx2πx]=2π+x0lim[x(arctanx2π)]=2π

  拆开计算的结果可能是极限不存在. 若   lim ⁡ f \,\lim f limf   lim ⁡ g   \,\lim g\, limg都存在,则极限为二者相加结果. 若   lim ⁡ f \,\lim f limf   lim ⁡ g   \,\lim g\, limg之一不存在,则极限不存在.

代换 (换元法)

  代换是非常重要的手法,常见有   x − 1   \,x-1\, x1代换、倒代换、负数代换、三角函数代换等. 灵活使用代换可以让式子变得清晰,利于计算。

  如:
lim ⁡ x → 0 sin ⁡ ( sin ⁡ x ) − sin ⁡ x x 3 = lim ⁡ t → 0 sin ⁡ t − t t 3 = lim ⁡ t → 0 cos ⁡ t − 1 3 t 2 = − 1 6 \lim\limits_{x \to 0}{\frac{\sin({\sin{x}})-\sin{x}}{x^3}}=\lim\limits_{t \to 0}{\frac{\sin{t}-t}{t^3}}=\lim\limits_{t \to 0}{\frac{\cos{t}-1}{3t^2}}=-\frac{1}{6} x0limx3sin(sinx)sinx=t0limt3sintt=t0lim3t2cost1=61
  尤其还要熟悉带三角函数的代换手法,如:
lim ⁡ x → 1 ( x − 1 ) ⋅ tan ⁡ π 2 x = lim ⁡ x → 1 ( x − 1 ) ⋅ tan ⁡ [ π 2 ( x − 1 ) + π 2 ] = − lim ⁡ x → 0 t ⋅ cot ⁡ π 2 t = − 2 π . \lim\limits_{x \to 1} (x-1)\cdot\tan{\frac{\pi}{2}}x=\lim\limits_{x \to 1} (x-1)\cdot\tan[{\frac{\pi}{2}}(x-1)+\frac{\pi}{2}]=-\lim\limits_{x \to 0}{t\cdot \cot{\frac{\pi}{2}t}}=-\frac{2}{\pi}. x1lim(x1)tan2πx=x1lim(x1)tan[2π(x1)+2π]=x0limtcot2πt=π2.

  x   \,x\, x   1 x   \,\frac{1}{x}\, x1

  题目特征
    多见于   sin ⁡ Δ ⋅ ln ⁡ Δ   \,\sin{\Delta} \cdot \ln\Delta\, sinΔlnΔ.

  如:
lim ⁡ x → 0 + x sin ⁡ x = e lim ⁡ x → 0 + sin ⁡ x ⋅ ln ⁡ x = e lim ⁡ x → 0 + sin ⁡ x x ⋅ ln ⁡ x 1 x = e lim ⁡ x → 0 + x ⋅ ln ⁡ x = 1 \lim\limits_{x \to 0^{+}}{x^{\sin{x}}}=e^{\lim\limits_{x \to 0^{+}}{\sin{x}·\ln{x}}}=e^{\lim\limits_{x \to 0^{+}}{\frac{\sin{x}}{x}·\frac{\ln{x}}{\frac{1}{x}}}}=e^{\lim\limits_{x \to 0^{+}}{x·\ln{x}}}=1 x0+limxsinx=ex0+limsinxlnx=ex0+limxsinxx1lnx=ex0+limxlnx=1

  当然,也可以根据需要除以其他   x   \,x\, x的等价无穷小 (比如除   tan ⁡ x \,\tan x tanx).

减少绝对值

  分子分母同时绝对值,求极限将无从下手. 可通过提取因子或同除等方法减少绝对值.

  如:
lim ⁡ x → 0 ∫ 0 2 x ∣ t − x ∣ sin ⁡ t d t ∣ x ∣ 3 = lim ⁡ x → 0 ∫ 0 2 x ∣ t x − 1 ∣ sin ⁡ t d t x 2 \lim\limits_{x \to 0}\frac{\int_0^{2x}|t-x|\sin{t}dt}{|x|^3}=\lim\limits_{x \to 0}\frac{\int_0^{2x}|\frac{t}{x}-1|\sin{t}dt}{x^2} x0limx302xtxsintdt=x0limx202xxt1sintdt

有界函数 ∗ * 无穷小还是无穷小

  容易忽视,可能会在比较复杂的式子里塞一项.

与导数、变积分限函数结合

  对于导数,有的题目直接把导数作为已知条件,如:已知   f ′ ( 0 ) = 2 \,f'(0)=2 f(0)=2;有的题目则是根据导数定义给出的条件,如:已知   lim ⁡ x → 0 f ( x ) x = 2 \,\lim\limits_{x \to 0}{\frac{f(x)}{x}=2} x0limxf(x)=2. 导数相关内容见:一元微分学.

  对于变积分限函数,要注意先清理掉被积函数中的多余变量,再使用洛必达法则. 变积分限函数相关内容见:不定积分与定积分.

中值定理与牛顿莱布尼茨公式( N . − L . N.-L. N.L.)

  题目特征
    在求极限这一块比较常见的是使用拉格朗日中值定理 ( L \text{L} L).
    若极限的一部分形式明显是   f ( x + a ) − f ( x ) \,f(x+a)-f(x) f(x+a)f(x),如:
lim ⁡ x → 0 x 2 ( 2 1 x − 2 1 x + 1 ) \lim\limits_{x \to 0}{x^2}(2^{\frac{1}{x}}-2^\frac{1}{x+1}) x0limx2(2x12x+11)    发现   2 1 x − 2 1 x + 1   \,2^{\frac{1}{x}}-2^\frac{1}{x+1}\, 2x12x+11难以通过其他求极限方法处理,但其形式明显是   f ( x + a ) − f ( x )   \,f(x+a)-f(x)\, f(x+a)f(x)(多一个负号),这种情况应优先考虑   L \,\text{L} L.

    还可能结合 N . − L . N.-L. N.L. f ( x ) − f ( a ) = ∫ a x f ′ ( t ) d t f(x)-f(a)=\int_a^xf'(t)\text{d}t f(x)f(a)=axf(t)dt

  关于   N . − L .   \,N.-L.\, N.L.和其他中值定理相关内容,见:中值定理.

三角函数周期性

  特征:题目是带三角函数数列极限,且三角函数中含   π \,\pi π.

  思路:考虑使用周期性,以   sin Δ   \,\text{sin}\Delta\, sinΔ为例:
    (1) 从   Δ   \,\Delta\, Δ中拆出   2 n π \,2n\pi 2nπ
    (2) 在   Δ   \,\Delta\, Δ内部加或减   2 n π \,2n\pi 2nπ.

  如:求极限: lim ⁡ n → ∞ n   sin 4 n 2 + 1 π \lim\limits_{n\to\infty}n\,\text{sin}\sqrt{4n^2+1}\pi nlimnsin4n2+1 π.
    考虑在内部减一个周期:
lim ⁡ n → ∞ n   sin 4 n 2 + 1 π = lim ⁡ n → ∞ n   sin ( 4 n 2 + 1 − 2 n ) π \lim\limits_{n\to\infty}n\,\text{sin}\sqrt{4n^2+1}\pi=\lim\limits_{n\to\infty}n\,\text{sin}(\sqrt{4n^2+1}-2n)\pi nlimnsin4n2+1 π=nlimnsin(4n2+1 2n)π

    下面就可以用分子有理化继续往下做了.

已知极限求另一个极限

  特征
    设   f ( x )   \,f(x)\, f(x)连续,且   lim ⁡ x → 0 tan 2 x + x f ( x ) x 3 = 2 3 \,\lim\limits_{x\to0}\frac{\text{tan}2x+xf(x)}{x^3}=\frac{2}{3} x0limx3tan2x+xf(x)=32,则   lim ⁡ x → 0 2 + f ( x ) x 2 = ?   \,\lim\limits_{x\to0}\frac{2+f(x)}{x^2}=?\, x0limx22+f(x)=?

  解题方法
    (1) 通过等价无穷小、拆项法、泰勒展开,用已知极限凑出待求极限.
    (2) 先解出   f ( x )   \,f(x)\, f(x)的表达式,再代入求解.

  方法(2)的原理:
  
    若   lim ⁡ x → ⋅ f ( x ) = A \,\lim\limits_{x\to\cdot}f(x)=A xlimf(x)=A A   A\, A是一个常数,那么   f ( x ) = A + α \,f(x)=A+\alpha f(x)=A+α,其中   lim ⁡ x → ⋅ α = 0 \,\lim\limits_{x\to\cdot}\alpha=0 xlimα=0.

  两种方法通常都可以使用. 方法(2)的思想还多运用于多元微分学. 下面演示一下方法(2)的解题过程:

  例. 若   lim ⁡ x → 0 sin 6 x + x f ( x ) x 3 = 0 \,\lim\limits_{x\to 0}\frac{\text{sin}6x+xf(x)}{x^3}=0 x0limx3sin6x+xf(x)=0,则   6 + f ( x ) x 2 = ? \,\frac{6+f(x)}{x^2}=? x26+f(x)=?
  
  解:由   lim ⁡ x → 0 sin 6 x + x f ( x ) x 3 = 0 \,\lim\limits_{x\to 0}\frac{\text{sin}6x+xf(x)}{x^3}=0 x0limx3sin6x+xf(x)=0
sin 6 x + x f ( x ) x 3 = 0 + α      ( lim ⁡ x → 0 α = 0 ) \frac{\text{sin}6x+xf(x)}{x^3}=0+\alpha\;\;(\lim\limits_{x\to 0}\alpha=0) x3sin6x+xf(x)=0+α(x0limα=0) ⇒ f ( x ) = − sin 6 x x + o ( x 3 ) x = − sin 6 x x + o ( x 2 ) \Rightarrow f(x)=-\frac{\text{sin}6x}{x}+\frac{o(x^3)}{x}=-\frac{\text{sin}6x}{x}+o(x^2) f(x)=xsin6x+xo(x3)=xsin6x+o(x2)    注意这里用到了无穷小的运算规则 o ( x m ) x n = o ( x m − n )        ( m ⩾ n ) \frac{o(x^m)}{x^n}=o(x^{m-n})\;\;\;({\color{Red}m\geqslant n}) xno(xm)=o(xmn)(mn)
  
    因此,   lim ⁡ x → 0 6 + f ( x ) x 2 = 36 \,\lim\limits_{x\to 0}\frac{6+f(x)}{x^2}=36 x0limx26+f(x)=36.

arctan x + arctan 1 x \text{arctan}x+\text{arctan}\frac{1}{x} arctanx+arctanx1

  请一定记住以下函数: arctan x + arctan 1 x = { π 2 , x > 0 , − π 2 , x < 0. \text{arctan}x+\text{arctan}\frac{1}{x}=\begin{cases}\frac{\pi}{2},x>0,\\-\frac{\pi}{2},x<0.\end{cases} arctanx+arctanx1={2πx>02πx<0.

  特点:(1) 是一个奇函数. (2) 可以理解为   π 2   \,\frac{\pi}{2}\, 2π倍的符号函数. (3) 定义域为   ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) \,(-\infty,0)\cup(0,+\infty) (,0)(0,+).

  该函数有时可以很巧妙地运用在极限求解中:

  例. 求以下极限:
lim ⁡ x → + ∞ ( 2 π ⋅ arctan x 2 ) x \lim\limits_{x\to+\infty}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})^x x+lim(π2arctan2x)x  解: lim ⁡ x → + ∞ ( 2 π ⋅ arctan x 2 ) x = e lim ⁡ x → + ∞ x ⋅ ln ( 2 π ⋅ arctan x 2 ) \lim\limits_{x\to+\infty}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})^x=e^{\lim\limits_{x\to+\infty}x\cdot\text{ln}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})} x+lim(π2arctan2x)x=ex+limxln(π2arctan2x),其中:
lim ⁡ x → + ∞ x ln ( 2 π ⋅ arctan x 2 ) = lim ⁡ x → + ∞ x ( 2 π ⋅ arctan x 2 − 1 ) = 2 π lim ⁡ x → + ∞ x ( arctan x 2 − π 2 ) \lim\limits_{x\to+\infty}x\text{ln}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})=\lim\limits_{x\to+\infty}x(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2}-1)=\frac{2}{\pi}\lim\limits_{x\to+\infty}x({\color{Red}\text{arctan}\frac{x}{2}}-\frac{\pi}{2}) x+limxln(π2arctan2x)=x+limx(π2arctan2x1)=π2x+limx(arctan2x2π) = 2 π lim ⁡ x → + ∞ x ( π 2 − arctan 2 x − π 2 ) = 2 π lim ⁡ x → + ∞ x ( − arctan 2 x ) = − 2 π lim ⁡ x → + ∞ x ⋅ 2 x = − 4 π =\frac{2}{\pi}\lim\limits_{x\to+\infty}x({\color{Red}\frac{\pi}{2}-\text{arctan}\frac{2}{x}}-\frac{\pi}{2})=\frac{2}{\pi}\lim\limits_{x\to+\infty}x(-\text{arctan}\frac{2}{x})=-\frac{2}{\pi}\lim\limits_{x\to+\infty}x\cdot\frac{2}{x}=-\frac{4}{\pi} =π2x+limx(2πarctanx22π)=π2x+limx(arctanx2)=π2x+limxx2=π4    因此,原极限为   e − 4 π \,e^{-\frac{4}{\pi}} eπ4.

10 左右极限问题

  特征:函数在某一点极限存在的充要条件是左右极限同时存在. 在函数中含有根号、取整函数等时,可能使得左右极限不同或不存在,导致极限不存在. 具体来说,当待求极限出现以下特征时,一定要考虑左右极限是否相同:

    (1) ∣ x ∣ , x → 0 |x|,x\to0 xx0.
    (2) x , x → ∞ \sqrt{x},x\to\infty x x.
    (3) e x , x → ∞ e^x,x\to\infty exx e 1 x , x → 0 e^\frac{1}{x},x\to0 ex1x0.
    (4) arctan x , x → ∞ \text{arctan}x,x\to\infty arctanxx arctan 1 x , x → 0 \text{arctan}\frac{1}{x},x\to0 arctanx1x0.
    (5) [ x ] [x] [x] x → n x\to n xn.
    (6) 分段函数的分段点处.

  读者可以尝试分析这个极限,极具迷惑性: lim ⁡ x → 0 ( 1 + 1 x ) x \lim\limits_{x\to 0}\big(1+\frac{1}{x}\big)^x x0lim(1+x1)x

  分析:
    当   x → 0 +   \,x\to0^+\, x0+时,
lim ⁡ x → 0 + ( 1 + 1 x ) x = e lim ⁡ x → 0 + x ln ( 1 + 1 x ) = e lim ⁡ x → 0 + 1 1 + x = 1 \lim\limits_{x\to 0^+}\big(1+\frac{1}{x}\big)^x=e^{\lim\limits_{x\to 0^{+}}x\text{ln}(1+\frac{1}{x})}=e^{\lim\limits_{x\to 0^{+}}\frac{1}{1+x}}=1 x0+lim(1+x1)x=ex0+limxln(1+x1)=ex0+lim1+x1=1

    当   x → 0 −   \,x\to0^-\, x0时, 1 + 1 x → − ∞ 1+\frac{1}{x}\to-\infty 1+x1,极限不存在. 这是因为负数的负分数次方,在实数范围内存在无数个无意义点 (因为对负数开偶次方根). 比如   x = − 1 4   \,x=-\frac{1}{4}\, x=41时, ( 1 + 1 x ) x = 1 − 3 4 (1+\frac{1}{x})^x=\frac{1}{\sqrt[4]{-3}} (1+x1)x=43 1,无意义. 由于极限存在需保证在该点的某一去心邻域内函数有定义,而在此情形下,函数任意去心邻域的左侧都存在无意义点,因此原极限不存在.

11 求参数问题的思路

(一) 等价无穷小求参数问题 (比较无穷小的关系)

  常见解题方法:
     ( 1 )   (1)\, (1)直接利用等价无穷小求解:

  例. 当   x → 0   \,x \to 0\, x0时, ln ⁡ cos ⁡ a x ∼ − 2 x b   ( a > 0 ) \ln{\cos{ax}} \sim -2x^b\,(a >0) lncosax2xb(a>0),求   a \,a a b b b.
  解:由   x → 0   \,x \to 0\, x0时, ln ⁡ cos ⁡ a x ∼ cos ⁡ a x − 1 ∼ − 1 2 a 2 x 2 \ln{\cos{ax}} \sim \cos{ax - 1} \sim -\frac{1}{2}a^2x^2 lncosaxcosax121a2x2 − 1 2 a 2 x 2 ∼ − 2 x b -\frac{1}{2}a^2x^2 \sim -2x^b 21a2x22xb,得   a = b = 2 \,a = b=2 a=b=2.

  例. 当   x → 0   \,x \to 0\, x0时, ( 1 + x sin ⁡ x ) a − 1 ∼ 1 − cos ⁡ x (1+x \sin{x})^a - 1 \sim 1 - \cos{x} (1+xsinx)a11cosx,求   a   \,a\, a的值.
  解:由   x → 0   \,x \to 0\, x0时, ( 1 + x sin ⁡ x ) a − 1 ∼ 2 a x 2 (1+x \sin{x})^a - 1 \sim 2ax^2 (1+xsinx)a12ax2 1 − cos ⁡ x ∼ 1 2 x 2 1 - \cos{x} \sim \frac{1}{2}x^2 1cosx21x2,得   2 a = 1 2 \,2a=\frac{1}{2} 2a=21 a = 1 4 a=\frac{1}{4} a=41.

     ( 2 )   (2)\, (2)如果题目含有变积分限函数,可在草稿纸上通过对其求导确定阶数:

  例. 当   x → 0   \,x \to 0\, x0时, f ( x ) = ∫ 0 x 2 ln ⁡ ( 1 + t ) d t ∼ g ( x ) = x a ( e b x − 1 ) f(x)=\int^{x^2}_{0}{\ln{(1+t)}dt} \sim g(x)=x^a(e^{bx}-1) f(x)=0x2ln(1+t)dtg(x)=xa(ebx1),求   a 、 b   \,a、b\, ab的值.
  分析: f ′ ( x ) = [ ∫ 0 x 2 ln ⁡ ( 1 + t ) d t ] ′ = 2 x ⋅ ln ⁡ ( 1 + x 2 ) ∼ 2 x 3 f'(x)=[\int_{0}^{x^2}{\ln{(1+t)}dt}]'=2x\cdot\ln{(1+x^2)} \sim 2x^3 f(x)=[0x2ln(1+t)dt]=2xln(1+x2)2x3,说明 f ( x ) ∼ x 4 2 f(x) \sim \frac{x^4}{2} f(x)2x4.
  解:由 lim ⁡ x → 0 ∫ 0 x 2 ln ⁡ ( 1 + t ) d t x 4 = lim ⁡ x → 0 2 x ⋅ ln ⁡ ( 1 + x 2 ) 4 x 3 = 1 2 \lim\limits_{x \to 0}{\frac{\int_{0}^{x^2}{\ln{(1+t)}dt}}{x^4}}=\lim\limits_{x \to 0}{\frac{2x\cdot\ln{(1+x^2)}}{4x^3}}=\frac{1}{2} x0limx40x2ln(1+t)dt=x0lim4x32xln(1+x2)=21 f ( x ) ∼ x 4 2 f(x) \sim \frac{x^4}{2} f(x)2x4
    再由 g ( x ) = x a ( e b x − 1 ) ∼ b x a + 1 g(x) = x^a(e^{bx}-1) \sim bx^{a+1} g(x)=xa(ebx1)bxa+1,得   a = 3 , b = 1 2 \,a=3,b=\frac{1}{2} a=3b=21.

      如果题目中还涉及抽象函数,无法直接使用等价无穷小,可以通过假设阶数的方法判断阶数:
      假设   g ( x )   \,g(x)\, g(x)阶数为   n   \,n\, n,则通过已知条件和   lim ⁡ x → 0 g ( x ) x n   \,\lim\limits_{x \to 0}\frac{g(x)}{x^n}\, x0limxng(x)可以解出   n   \,n\, n.

  例. f ( x )   f(x)\, f(x)二阶连续可导, lim ⁡ x → 0 f ( x ) x 2 = − 2   \lim\limits_{x \to 0}{\frac{f(x)}{x^2}}=-2\, x0limx2f(x)=2. ∫ 0 t 2 t f ( x 2 − t ) d t ∼ a x b ( x → 0 ) \int_0^{t^2}tf(x^2-t)dt \sim ax^b (x \to 0) 0t2tf(x2t)dtaxb(x0),求   a \,a a b b b.
  解: 1 o   1^o\, 1o lim ⁡ x → 0 f ( x ) x 2 = − 2   ⇒ f ( 0 ) = 0 \lim\limits_{x \to 0}{\frac{f(x)}{x^2}}=-2\, \Rightarrow f(0)=0 x0limx2f(x)=2f(0)=0
       lim ⁡ x → 0 f ′ ( x ) 2 x = − 2   \lim\limits_{x \to 0}{\frac{f'(x)}{2x}}=-2\, x0lim2xf(x)=2(洛必达) ⇒ f ′ ( 0 ) = 0 \Rightarrow f'(0)=0 f(0)=0
       lim ⁡ x → 0 f ′ ′ ( x ) 2 = − 2   \lim\limits_{x \to 0}{\frac{f''(x)}{2}}=-2\, x0lim2f(x)=2(洛必达) ⇒ f ′ ′ ( 0 ) = − 4 \Rightarrow f''(0)=-4 f(0)=4
     2 o   2^o\, 2o ∫ 0 t 2 t f ( x 2 − t ) d t = x 2 − t = u x 2 ∫ 0 x 2 f ( u ) d u − ∫ 0 x 2 u f ( u ) d u \int_0^{t^2}tf(x^2-t)dt \xlongequal{x^2-t=u}x^2\int_{0}^{x^2}f(u)du-\int_{0}^{x^2}uf(u)du 0t2tf(x2t)dtx2t=u x20x2f(u)du0x2uf(u)du
     3 o   3^o\, 3o 假设   ∫ 0 t 2 t f ( x 2 − t ) d t   \,\int_0^{t^2}tf(x^2-t)dt\, 0t2tf(x2t)dt阶数为   n   \,n\, n
       lim ⁡ x → 0 x 2 ∫ 0 x 2 f ( u ) d u − ∫ 0 x 2 u f ( u ) d u x n \lim\limits_{x \to 0}{\frac{x^2\int_0^{x^2}{f(u)du}-\int_0^{x^2}uf(u)du}{x^n}} x0limxnx20x2f(u)du0x2uf(u)du
       = lim ⁡ x → 0 2 x ∫ 0 x 2 f ( u ) d u n x n − 1 =\lim\limits_{x \to 0}{\frac{2x\int_0^{x^2}{f(u)du}}{nx^{n-1}}} =x0limnxn12x0x2f(u)du
       = 2 n lim ⁡ x → 0 ∫ 0 x 2 f ( u ) d u x n − 2 =\frac{2}{n}\lim\limits_{x \to 0}{\frac{\int_0^{x^2}{f(u)du}}{x^{n-2}}} =n2x0limxn20x2f(u)du
       = 2 n lim ⁡ x → 0 2 x f ( x 2 ) ( n − 2 ) x n − 3 =\frac{2}{n}\lim\limits_{x \to 0}{\frac{2xf(x^2)}{(n-2)x^{n-3}}} =n2x0lim(n2)xn32xf(x2)
       = 4 n ( n − 2 ) lim ⁡ x → 0 f ( x 2 ) x n − 4 =\frac{4}{n(n-2)}\lim\limits_{x \to 0}{\frac{f(x^2)}{x^{n-4}}} =n(n2)4x0limxn4f(x2)
      由   lim ⁡ x → 0 f ( x ) x 2 = − 2   \,\lim\limits_{x \to 0}{\frac{f(x)}{x^2}}=-2\, x0limx2f(x)=2,当   n − 4 = 4   \,n-4=4\, n4=4,即   n = 8   \,n=8\, n=8时,
       lim ⁡ x → 0 f ( x 2 ) x n − 4 = − 2 \lim\limits_{x \to 0}{\frac{f(x^2)}{x^{n-4}}}=-2 x0limxn4f(x2)=2 ∫ 0 t 2 t f ( x 2 − t ) d t ∼ 4 8 ( 8 − 2 ) × ( − 2 ) x 8 = − 1 6 x 8 \int_0^{t^2}tf(x^2-t)dt \sim \frac{4}{8(8-2)}\times (-2)x^8=-\frac{1}{6}x^8 0t2tf(x2t)dt8(82)4×(2)x8=61x8.
      得   a = − 1 6 \,a=-\frac{1}{6} a=61 b = 8 b=8 b=8

     ( 3 )   (3)\, (3) 不能直接使用等价无穷小,考虑泰勒展开

  例. 当   x → 0   \,x \to 0\, x0时, f ( x ) = ∫ 0 tan ⁡ x arctan ⁡ t 2 d t ∼ g ( x ) = x − sin x f(x)=\int^{\tan{x}}_{0}{\arctan{t^2}dt} \sim g(x)=x-\text{sin}x f(x)=0tanxarctant2dtg(x)=xsinx,比较这两个无穷小的关系.
  分析: f ′ ( x ) = arctan ⁡ tan 2 x   ⋅   sec ⁡ x 2 ∼ x 2 ( tan ⁡ 2 x + 1 ) ∼ x 2 f'(x)=\arctan{\text{tan}^2x}\,\cdot\, \sec{x^2} \sim x^2(\tan^2{x}+1) \sim x^2 f(x)=arctantan2xsecx2x2(tan2x+1)x2,说明 f ( x ) ∼ x 3 3 f(x) \sim \frac{x^3}{3} f(x)3x3.
  解: g ( x ) = x − sin ⁡ x = x − ( x − x 3 3 ! + o ( x 3 ) ) ∼ 1 6 x 3 g(x) = x - \sin{x} = x - (x - \frac{x^3}{3!}+o(x^3)) \sim \frac{1}{6}{x^3} g(x)=xsinx=x(x3!x3+o(x3))61x3
    再由 lim ⁡ x → 0 ∫ 0 tan ⁡ x arctan ⁡ t 2 d t x 3 = lim ⁡ x → 0 arctan ⁡ tan 2 x   ⋅   sec ⁡ x 2 3 x 2 = 1 3 \lim\limits_{x \to 0}{\frac{\int^{\tan{x}}_{0}{\arctan{t^2}dt} }{x^3}}=\lim\limits_{x \to 0}{\frac{\arctan{\text{tan}^2x}\,\cdot\, \sec{x^2}}{3x^2}}=\frac{1}{3} x0limx30tanxarctant2dt=x0lim3x2arctantan2xsecx2=31 f ( x ) ∼ x 3 3 f(x) \sim \frac{x^3}{3} f(x)3x3
    所以二者是同阶非等价的无穷小.

(二) 极限方程求参数问题

  题目特征
    1. 给定一个含   a 、 b   \,a、b\, ab等参数的极限方程,求参数.
    2. 确定常数,使   f ( x ) = a x + b x 2 + . . . + o ( x n ) \,f(x)=ax+bx^2+...+o(x^n) f(x)=ax+bx2+...+o(xn).

  解题方法
      ( 1 ) (1) (1) 通分、二次项展开、抓大放小:

  例. lim ⁡ x → ∞ x 10 ( x + 1 ) n − x n = b ( ≠ 0 ) \lim\limits_{x \to \infty}{\frac{x^{10}}{(x+1)^n-x^n}}=b (\neq 0) xlim(x+1)nxnx10=b(=0),求   n 、 b \,n、b nb.
  例. lim ⁡ x → ∞ ( x 2 + 2 x + 3 x − 1 − a x − b ) = 0 \lim\limits_{x \to \infty}{(\frac{x^2+2x+3}{x-1}-ax-b)}=0 xlim(x1x2+2x+3axb)=0,求   a 、 b \,a、b ab.

      ( 2 ) (2) (2) 直接观察出常见等价无穷小:

  例. lim ⁡ x → 0 sin ⁡ x e x − a ( cos ⁡ x − b ) = 5 \lim\limits_{x \to 0}{\frac{\sin{x}}{e^x-a}(\cos{x}-b)}=5 x0limexasinx(cosxb)=5,求   a 、 b \,a、b ab.
  解: lim ⁡ x → 0 sin ⁡ x e x − a ( cos ⁡ x − b ) = 5 ⇒ a = 1 \lim\limits_{x \to 0}{\frac{\sin{x}}{e^x-a}(\cos{x}-b)}=5 \Rightarrow a=1 x0limexasinx(cosxb)=5a=1
     lim ⁡ x → 0 sin ⁡ x e x − 1 ( cos ⁡ x − b ) = 5 ⇒ b = − 4 \lim\limits_{x \to 0}{\frac{\sin{x}}{e^x-1}(\cos{x}-b)}=5 \Rightarrow b=-4 x0limex1sinx(cosxb)=5b=4.

      ( 3 ) (3) (3) 泰勒展开:

  例. 设 lim ⁡ x → 0 ln ⁡ ( 1 − 2 x + 3 x 2 ) + a x + b x 2 x 2 = 2 \lim\limits_{x \to 0}{\frac{\ln({1-2x+3x^2})+ax+bx^2}{x^2}}=2 x0limx2ln(12x+3x2)+ax+bx2=2,求   a 、 b   \,a、b\, ab的值.
  解: ln ⁡ ( 1 − 2 x + 3 x 2 ) = ( − 2 x + 3 x 2 ) − ( − 2 x + 3 x 2 ) 2 2 + o ( x 2 ) = − 2 x + x 2 + o ( x 2 ) \ln{(1-2x+3x^2)} = (-2x+3x^2)-\frac{(-2x+3x^2)^2}{2}+o(x^2)=-2x+x^2+o(x^2) ln(12x+3x2)=(2x+3x2)2(2x+3x2)2+o(x2)=2x+x2+o(x2)
  则   lim ⁡ x → 0 ln ⁡ ( 1 − 2 x + 3 x 2 ) + a x + b x 2 x 2 = lim ⁡ x → 0 ( a − 2 ) x + ( b + 1 ) x 2 x 2 = 2 \,\lim\limits_{x \to 0}{\frac{\ln({1-2x+3x^2})+ax+bx^2}{x^2}}=\lim\limits_{x \to 0}{\frac{(a-2)x+(b+1)x^2}{x^2}}=2 x0limx2ln(12x+3x2)+ax+bx2=x0limx2(a2)x+(b+1)x2=2,得   a = 2 、 b = 1 \,a=2、b=1 a=2b=1.

(三) x   x\, x   n   \,n\, n阶无穷小求参数问题

  题目特征
     f ( x ) f(x) f(x)   x   \,x\, x   n   \,n\, n阶无穷小,求参数.

  解题方法
    一般需要泰勒展开.

  例. 当   x → 0   \,x \to 0\, x0时, e x − 1 + a x 1 + b x e^x-\frac{1+ax}{1+bx} ex1+bx1+ax   x   \,x\, x   3   \,3\, 3阶无穷小,求   a 、 b   \,a、b\, ab的值.
   解:
     ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + o ( x 3 ) (1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3+o(x^3) (1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+o(x3)
     1 1 + b x = 1 − b x + b 2 x 2 − b 3 x 3 + o ( x 3 ) \frac{1}{1+bx}=1-bx+b^2x^2-b^3x^3+o(x^3) 1+bx1=1bx+b2x2b3x3+o(x3)
     1 + a x 1 + b x = ( 1 − b x + b 2 x 2 − b 3 x 3 ) [ 1 + a x ] = 1 + ( a − b ) x + ( b 2 − a b ) x 2 + ( a b 2 − b 3 ) x 3 + o ( x 3 ) \frac{1+ax}{1+bx}=(1-bx+b^2x^2-b^3x^3)[1+ax]=1+(a-b)x+(b^2-ab)x^2+(ab^2-b^3)x^3+o(x^3) 1+bx1+ax=(1bx+b2x2b3x3)[1+ax]=1+(ab)x+(b2ab)x2+(ab2b3)x3+o(x3)
     e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) = 1 + x + x 2 2 + x 3 6 + o ( x 3 ) e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3)=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3) ex=1+x+2!x2+3!x3+o(x3)=1+x+2x2+6x3+o(x3)
     e x − 1 + a x 1 + b x = ( 1 − a + b ) x + ( 1 2 + a b − b 2 ) x 2 + ( 1 6 − a b 2 + b 3 ) x 3 + o ( x 3 ) e^x-\frac{1+ax}{1+bx}=(1-a+b)x+(\frac{1}{2}+ab-b^2)x^2+(\frac{1}{6}-ab^2+b^3)x^3+o(x^3) ex1+bx1+ax=(1a+b)x+(21+abb2)x2+(61ab2+b3)x3+o(x3)
    因为   e x − 1 + a x 1 + b x \,e^x-\frac{1+ax}{1+bx} ex1+bx1+ax   x   \,x\, x   3   \,3\, 3阶无穷小,故 { 1 − a + b = 0 , 1 2 + a b − b 2 = 0 , 1 6 − a b 2 − b 3 ≠ 0 , \begin{cases} 1-a+b=0, \\ \frac{1}{2}+ab-b^2=0, \\ \frac{1}{6}-ab^2-b^3 \neq 0,\\ \end{cases} 1a+b=0,21+abb2=0,61ab2b3=0,
    解得   a = 1 2 , b = − 1 2 \,a=\frac{1}{2},b=-\frac{1}{2} a=21b=21.

(四) 确定参数使   f ( x )   \,f(x)\, f(x)成为当   x → a   \,x \to a\, xa时阶数尽可能高的无穷小

  不断对   f ( x )   \,f(x)\, f(x)求导,刚开始代入   x = a   \,x=a\, x=a   f ( n ) ( a )   \,f^{(n)}(a)\, f(n)(a)   0 \,0 0,直到求导到无法确定   f ( n ) ( a )   \,f^{(n)}(a)\, f(n)(a)等于   0 \,0 0,即可解出参数.

(五) 确定阶数   n   \,n\, n的范围

  给出两组等价无穷小,锁定阶数   n   \,n\, n.

12 极限保号性

  极限保号性的三种形式

    (1) 若   lim ⁡ x → a f ( x ) = A > 0 ( < 0 )   \,\lim\limits_{x \to a}f(x)=A>0(<0)\, xalimf(x)=A>0(<0),则当   x → ⋅   \,x\to\cdot\, x时,有   f ( x ) > 0 ( < 0 ) \,f(x)>0(<0) f(x)>0(<0).

  更加严谨的表述为:若   lim ⁡ x → a f ( x ) = A > 0 ( < 0 )   \,\lim\limits_{x \to a}f(x)=A>0(<0)\, xalimf(x)=A>0(<0),则存在   δ > 0 \,\delta>0 δ>0,当   0 < ∣ x − a ∣ < δ   \,0<|x-a|<\delta\, 0<xa<δ时,有   f ( x ) > 0 ( < 0 ) \,f(x)>0(<0) f(x)>0(<0).
  此法也称脱帽法,即脱掉极限号. 反之不成立,因为不能确保   f ( x )   \,f(x)\, f(x)的极限存在.
  与之相对的还有戴帽法,即戴上极限号.

  戴帽法
    若   f ( x ) ⩾ 0 ( ⩽ 0 )   \,f(x)\geqslant0(\leqslant0)\, f(x)0(0),且   lim ⁡ x → ⋅ f ( x ) = A   \,\lim\limits_{x\to\cdot} f(x)=A\, xlimf(x)=A,则   A ⩾ 0 ( ⩽ 0 ) \,A\geqslant0(\leqslant0) A0(0).
    需要注意的是,脱帽法是严格不等于   0   \,0\, 0的,而戴帽法是可以取等的:
    比如   f ( x ) = e − x > 0 \,f(x)=e^{-x}>0 f(x)=ex>0   lim ⁡ x → + ∞ f ( x ) = 0 \,\lim\limits_{x\to+\infty}f(x)=0 x+limf(x)=0 g ( x ) = 0 g(x)=0 g(x)=0   lim ⁡ x → + ∞ g ( x ) = 0 \,\lim\limits_{x\to+\infty} g(x)=0 x+limg(x)=0,戴帽法均适用的.
    反过来   lim ⁡ x → + ∞ f ( x ) = 0 \,\lim\limits_{x\to+\infty}f(x)=0 x+limf(x)=0,在   x → + ∞   时 \,x\to+\infty\,时 x+   f ( x )   \,f(x)\, f(x)即可能是恒为   0   \,0\, 0的常值函数,也可能是   f ( x ) = e − x   \,f(x)=e^{-x}\, f(x)=ex这样恒大于   0   \,0\, 0的函数,脱帽法不适用.

    (2) 若   f ( x ) ⩾ g ( x )   \,f(x) \geqslant g(x)\, f(x)g(x),且   lim ⁡ f ( x ) = A   \,\lim f(x)=A\, limf(x)=A   lim ⁡ x → ⋅ g ( x ) = B   \,\lim\limits_{x\to \cdot} g(x)=B\, xlimg(x)=B,则   A ⩾ B \,A\geqslant B AB.
    (3) 若   lim ⁡ x → ⋅ f ( x ) > lim ⁡ x → ⋅ g ( x )   \,\lim\limits_{x \to \cdot}f(x) > \lim\limits_{x \to \cdot}g(x)\, xlimf(x)>xlimg(x),则当   x → ⋅   \,x\to\cdot\, x时,有   f ( x ) > g ( x ) \,f(x)>g(x) f(x)>g(x).

  极限保号性的应用

    (1) 判断极值点

    例. f ( 1 ) = 2 f(1) = 2 f(1)=2 lim ⁡ x → 1 f ( x ) − 2 ( x − 1 ) 2 = 3 \lim\limits_{x \to 1}{\frac{f(x)-2}{(x-1)^2}=3} x1lim(x1)2f(x)2=3,判断   x = 1   \,x=1\, x=1是什么点?
       ∵ lim ⁡ x → 1 f ( x ) − 2 ( x − 1 ) 2 = 3 > 0 \because \lim\limits_{x \to 1}{\frac{f(x)-2}{(x-1)^2}=3>0} x1lim(x1)2f(x)2=3>0
       ∴ ∃ δ > 0 \therefore \exist \delta>0 δ>0,当 0 < ∣ x − 1 ∣ < δ 0<|x-1|<\delta 0<x1<δ时,有
             f ( x ) − 2 ( x − 1 ) 2 > 0 \frac{f(x)-2}{(x-1)^2}>0 (x1)2f(x)2>0
       ∵ ( x − 1 ) 2 > 0 \because (x-1)^2>0 (x1)2>0
       ∴ f ( x ) − 2 > 0 \therefore f(x)-2>0 f(x)2>0 f ( x ) > 2 f(x) > 2 f(x)>2
       ⇒ f ( x ) > f ( 1 ) \Rightarrow f(x) > f(1) f(x)>f(1)
       ∴ x = 1   \therefore x=1\, x=1   f ( x )   \,f(x)\, f(x) 的极小值点.

    (2) 判断拐点,思路同上.

13 数列极限储备知识

数列极限

  定义:对   ∀   ϵ > 0 \,\forall\,\epsilon>0 ϵ>0   ∃   N ∈ N + \,\exist \,N\in N^+ NN+,使得当   n > N   \,n>N\, n>N时,有 ∣   a n − a ∣ < ϵ |\,a_n-a|<\epsilon ana<ϵ,则 lim ⁡ n → ∞ a n = a \lim\limits_{n\to\infty}a_n=a nliman=a.

   n → ∞   n\to\infty\, n表示的是正无穷的含义(无需添加加号),因为   n   \,n\, n   1   \,1\, 1开始,必为正整数.

  重要结论:改变收敛数列的有限项,不会改变数列的敛散性与极限值.

  请读者深刻理解该结论,它同时也是经典的级数思想.

海涅定理

  设   f ( x )   \,f(x)\, f(x)   x 0   \,x_0\, x0的去心邻域内有定义,则   lim ⁡ x → x 0 f ( x ) = A   \,\lim\limits_{x\to x_0}f(x)=A\, xx0limf(x)=A存在的充要条件是:对任一极限为   x 0   \,x_0\, x0的数列   { x n }    ( x ≠ x 0 ) \,\{x_n\}\;(x\neq x_0) {xn}(x=x0),极限   lim ⁡ n → ∞ f ( x n ) = A   \,\lim\limits_{n\to \infty}f(x_n)=A\, nlimf(xn)=A存在.

  海涅定理是联系数列极限与函数极限的工具. 数列是由一系列孤立的点组成,不连续且不可导. 因此很多函数极限的求解方法不能使用 (比如洛必达法则). 但根据海涅定理,就可以先将数列极限转换为函数极限,使用函数极限求解方法求出的极限值,就等于数列极限的极限值.

  海涅定理的存在,使得等价无穷小非零因子代入对数列极限仍然适用.

夹逼准则

  (1) 准则内容

    如果数列   { x n } \,\{x_n\} {xn} { y n } \{y_n\} {yn} { z n }   \{z_n\}\, {zn}满足:

      a. ∃ N ∈ N + \exist N\in N^+ NN+,当   n > N   \,n>N\, n>N时,总有   y n ⩽ x n ⩽ z n \,y_n\leqslant x_n\leqslant z_n ynxnzn

      b. lim ⁡ n → ∞ y n = lim ⁡ n → ∞ z n = A \lim\limits_{n\to\infty}y_n=\lim\limits_{n\to\infty}z_n=A nlimyn=nlimzn=A.

    则数列极限   { x n }   \,\{x_n\}\, {xn}存在,且   lim ⁡ n → ∞ x n = A \,\lim\limits_{n\to\infty}x_n=A nlimxn=A.

  夹逼准则的本质是放缩思想,其用途非常广泛.

  (2) 两种最基本的放缩方法

     n ⋅ u min ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max n\cdot u_{\text{min}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} numinu1+u2+...+unnumax

     u i ⩾ 0   u_i\geqslant 0\, ui0时, 1 ⋅ u max ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max 1\cdot u_{\text{max}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} 1umaxu1+u2+...+unnumax

  例. 求以下极限: lim ⁡ n → ∞ ( 2 n + 3 n + 4 n ) 1 n = 4 \lim\limits_{n \to \infty}(2^n+3^n+4^n)^{\frac{1}{n}}=4 nlim(2n+3n+4n)n1=4
  解:
    显然, 4 n ⩽ 2 n + 3 n + 4 n ⩽ 3 ⋅ 4 n 4^n\leqslant2^n+3^n+4^n\leqslant 3\cdot4^n 4n2n+3n+4n34n
    (基本放缩思想之一: u i ⩾ 0   u_i\geqslant 0\, ui0时, 1 ⋅ u max ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max 1\cdot u_{\text{max}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} 1umaxu1+u2+...+unnumax)
    于是有: 4 ⩽ ( 2 n + 3 n + 4 n ) 1 n ⩽ 3 1 n ⋅ 4 4\leqslant(2^n+3^n+4^n)^{\frac{1}{n}}\leqslant 3^\frac{1}{n}\cdot4 4(2n+3n+4n)n13n14    由   lim ⁡ n → ∞ 4 = lim ⁡ n → ∞ 3 1 n ⋅ 4 = 4 \,\lim\limits_{n\to\infty}4=\lim\limits_{n\to\infty}3^{\frac{1}{n}}\cdot4=4 nlim4=nlim3n14=4 lim ⁡ n → ∞ ( 2 n + 3 n + 4 n ) 1 n = 4 \lim\limits_{n \to \infty}(2^n+3^n+4^n)^{\frac{1}{n}}=4 nlim(2n+3n+4n)n1=4.

  以上例题结论可推广为: lim ⁡ n → ∞ ( a 1 n + a 2 n + . . . + a m n ) 1 n = max ⁡ { a 1 , a 2 , . . . , a m } \color{Blue}\lim\limits_{n \to \infty}(a_1^n+a_2^n+...+a_m^n)^{\frac{1}{n}}=\max\{a_1, a_2,..., a_m\} nlim(a1n+a2n+...+amn)n1=max{a1,a2,...,am}

定积分定义

  (1) 定积分定义的理解

    定积分的定义为:设   f ( x )   \,f(x)\, f(x)在区间   [ a , b ]   \,[a,b]\, [a,b]上连续,则
∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i , λ = max ⁡ 1 ⩽ i ⩽ n { Δ x i } \int^b_af(x)\text{d}x=\lim\limits_{\lambda\to 0} \sum\limits^{n}_{i=1} f(\xi_i)\Delta x_i,\lambda=\max\limits_{1\leqslant i\leqslant n}\{\Delta x_i\} abf(x)dx=λ0limi=1nf(ξi)Δxiλ=1inmax{Δxi}

    定积分的几何意义是函数在区间内所围曲边梯形的面积. 其定义使用思想是:将积分区间   [ a , b ]   \,[a,b]\, [a,b]划分为   n   \,n\, n份(大小不一定相同),得到   n   \,n\, n个曲边梯形. 再将这些小曲边梯形的面积分别使用近似矩形的面积替代. 最后结合极限思想(当底边长度趋近于   0   \,0\, 0时,认为小曲边梯形的面积等于近似矩形面积),即可得到整个曲边梯形的面积,即定积分的值.
    在定义中, Δ x i   \Delta x_i\, Δxi表示每一个小区间的区间长度. 在每一个小区间内任取一点   ξ i \,\xi_i ξi,将其函数值   f ( ξ i )   \,f(\xi_i)\, f(ξi)作为小曲边梯形的近似高度. 于是   f ( ξ i ) Δ x i   \,f(\xi_i)\Delta x_i\, f(ξi)Δxi就表示每一个近似矩形的面积. λ   \lambda\, λ则是为了保证这些小区间中的最大区间长度趋近于   0   \,0\, 0(其他小区间就更趋近于   0   \,0\, 0了).

更多定积分相关内容见:不定积分与定积分.

  (2) 定积分定义与   n   \,n\, n项和极限的联系

    定积分的定义并未规定区间的划分方法,但不规则的划分方式不便出题. 所以一般只会考察将区间   n   \,n\, n等份(大小相同)的问题,形式上就是   n   \,n\, n项和的形式:

    设   f ( x )   \,f(x)\, f(x)在区间   [ a , b ]   \,[a,b]\, [a,b]上连续,将区间   [ a , b ]   \,[a,b]\, [a,b]平均分为   n   \,n\, n等份,则
∫ a b f ( x ) d x = lim ⁡ n → ∞ b − a n ∑ i = 1 n f ( ξ i ) , ξ i ∈ [ a + b − a n ⋅ ( i − 1 ) , a + b − a n ⋅ i ] \int^b_af(x)\text{d}x=\lim\limits_{n \to \infty} \frac{b-a}{n}\sum\limits_{i=1}^{n}f\big(\xi_i\big),\xi_i\in [a+\frac{b-a}{n}\cdot (i-1),a+\frac{b-a}{n}\cdot i] abf(x)dx=nlimnbai=1nf(ξi)ξi[a+nba(i1)a+nbai]

  其中, b − a n   \frac{b-a}{n}\, nba是小区间的区间长度. f ( ξ i )   f(\xi_i)\, f(ξi)是每一个小曲边梯形的近似高度 ( x = ξ i   x=\xi_i\, x=ξi是每一个等距小区间内任取的一点).

    于是,求   n   \,n\, n项和极限的问题就可以转化为求定积分的问题.

    特别地,当   a = 0 \,a=0 a=0 b = 1   b=1\, b=1时,取每一个小区间右端点的函数值( x = 1 , x = x=1,x= x=1x=) 作为近似矩形的高,则有: lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{n}f\bigg(\frac{i}{n}\bigg)=\int_{0}^{1}f(x)\text{d}x nlimn1i=1nf(ni)=01f(x)dx

  若选左端点则为: lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i − 1 n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n \to \infty}{\frac{1}{n}\sum\limits_{i=1}^{n}{f(\frac{i-1}{n})}}=\int_{0}^{1}f(x)\text{d}x nlimn1i=1nf(ni1)=01f(x)dx.

单调有界数列收敛定理

  (1) 若数列   { x n }   \,\{x_n\}\, {xn}单调,并且有界,那么   { x n }   \,\{x_n\}\, {xn}必收敛,即   lim ⁡ n → ∞ x n   \,\lim\limits_{n\to\infty}x_n\, nlimxn存在.

  (2) 若数列   { x n }   \,\{x_n\}\, {xn}单调增加,并且有上界,那么   { x n }   \,\{x_n\}\, {xn}必收敛,即   lim ⁡ n → ∞ x n   \,\lim\limits_{n\to\infty}x_n\, nlimxn存在.

  (3) 若数列   { x n }   \,\{x_n\}\, {xn}单调减少,并且有下界,那么   { x n }   \,\{x_n\}\, {xn}必收敛,即   lim ⁡ n → ∞ x n   \,\lim\limits_{n\to\infty}x_n\, nlimxn存在.

压缩映射定理

  定理1:已知   x n + 1 = f ( x n ) \,x_{n+1}=f(x_n) xn+1=f(xn),满足   f ( a ) = a \,f(a)=a f(a)=a,若
∣ x n + 1 − a ∣ = ∣ f ( x n ) − f ( a ) ∣ ⩽ r ∣ x n − a ∣ |x_{n+1}-a|=|f(x_n)-f(a)|\leqslant r|x_n-a| xn+1a=f(xn)f(a)rxna  且   r < 1 \,r<1 r<1,则有 lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_n=a nlimxn=a. 其中   r   \,r\, r称为压缩常数.

  推导
     0 ⩽ ∣ x n + 1 − a ∣ = ∣ f ( x n ) − f ( a ) ∣ ⩽ r ∣ x n − a ∣ ⩽ r 2 ∣ x n − 1 − a ∣ ⩽ . . . ⩽ r n ∣ x 1 − a ∣ 0\leqslant|x_{n+1}-a|=|f(x_n)-f(a)|\leqslant r|x_n-a|\leqslant r^2|x_{n-1}-a|\leqslant...\leqslant r^n|x_1-a| 0xn+1a=f(xn)f(a)rxnar2xn1a...rnx1a

     lim ⁡ n → ∞ r n ∣ x 1 − a ∣ = 0 \lim\limits_{n\to\infty} r^n|x_1-a|=0 nlimrnx1a=0,由夹逼准则,   lim ⁡ n → ∞ ∣ x n + 1 − a ∣ = 0 \,\lim\limits_{n\to\infty}|x_{n+1}-a|=0 nlimxn+1a=0. 即 lim ⁡ n → ∞ x n = a \lim\limits_{n\to\infty}x_n=a nlimxn=a.

  定理2 x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn),若   f ( x )   \,f(x)\, f(x)可导,且
f ′ ( x ) ⩽ r        ( 0 < r < 1 ) , f'(x)\leqslant r \;\;\;(0<r<1), f(x)r(0<r<1)  则   { x n }   \,\{x_n\}\, {xn}收敛. 其中   r   \,r\, r称为压缩常数.

  推导 ∣ f ( x n ) − f ( a ) ∣ = ∣ f ′ ( ξ ) ( x n − a ) ∣ = ∣ f ′ ( ξ ) ∣ ∣ x n − a ∣ ⩽ r ∣ x n − a ∣ |f(x_n)-f(a)|=|f'(\xi)(x_n-a)|=|f'(\xi)||x_n-a|\leqslant r|x_n-a| f(xn)f(a)=f(ξ)(xna)=f(ξ)xnarxna,由此转化为定理1的情况.

  注意
    (1) 从推导过程可以看出压缩映射定理本质上是夹逼准则的应用,因此往往需要结合放缩思想.
    (2) 压缩映射定理通常用于非单调数列极限存在性的证明,但也可用于单调数列.
    (3) 定理中的   a   \,a\, a就是先斩后奏对递推关系两边取极限所得的界.

  例. 设数列   { x n }   \,\{x_n\}\, {xn}满足   x 1 = 1 \,x_1=1 x1=1 x n + 1 = 1 + 1 x n x_{n+1}=1+\frac{1}{x_n} xn+1=1+xn1 n = 1 , 2 , . . . n=1,2,... n=1,2,...,证明   { x n }   \,\{x_n\}\, {xn}极限存在并求之.

  证:显然, x n ⩾ 1 x_n\geqslant1 xn1.
    (根据递推式分析求出   A = 1 + 5 2   \,A=\frac{1+\sqrt{5}}{2}\, A=21+5 )
    令   a = 1 + 5 2 \,a=\frac{1+\sqrt{5}}{2} a=21+5 ,于是有
∣ x n − a ∣ = ∣ 1 + 1 x n − ( 1 + 1 a ) ∣ = ∣ 1 x n − 1 a ∣ |x_n-a|=\bigg|1+\frac{1}{x_n}-(1+\frac{1}{a})\bigg|=\bigg|\frac{1}{x_n}-\frac{1}{a}\bigg| xna=1+xn1(1+a1)=xn1a1 = ∣ x n − a a x n ∣ ⩽ 1 a ∣ x n − a ∣ =\bigg|\frac{x_n-a}{ax_n}\bigg|\leqslant\frac{1}{a}|x_n-a| =axnxnaa1xna

    因为 1 a < 1 \frac{1}{a}<1 a1<1,所以 { x n } \{x_n\} {xn}极限存在.
    令   A = lim ⁡ n → ∞ x n \,A=\lim\limits_{n\to\infty}x_n A=nlimxn,对递推式两边去极限求得   A = 1 + 5 2 \,A=\frac{1+\sqrt{5}}{2} A=21+5 (实际上在分析时已经"猜"出).

极限存在性证明基本方法

  证明极限存在性,即证明   a n ∃   \,a_n \exist\, an、证明   { a n }   \,\{a_{n}\}\, {an}收敛:

  建议优先证明数列的单调性. 因为若能确定单调性,就能指导有界性的证明. 如果单调递增,就证上界,如果单调递减,就证下界. 如果发现不单调,可能就需要考虑压缩映射定理. 反之,若仅知道数列的一个上界或下界,是不能确定其单调性的.

证明单调性的方法总结

  (1) 作差:判断   a n + 1 − a n   \,a_{n+1}-a_{n}\, an+1an   0   \,0\, 0的关系. 若大于等于   0   \,0\, 0,则数列单调增加;若小于等于   0   \,0\, 0,则数列单调减少.

  如: a n + 1 = 1 2 ( a n + 1 a n ) a_{n+1}=\frac{1}{2}(a_n+\frac{1}{a_{n}}) an+1=21(an+an1)
     a n + 1 − a n = 1 2 ( a n + 1 a n ) − a n = 1 − a n 2 2 a n a_{n+1}-a_n=\frac{1}{2}(a_n+\frac{1}{a_{n}})-a_n=\frac{1-a_n^2}{2a_n} an+1an=21(an+an1)an=2an1an2.
    根据已知条件,判断 1 − a n 2 2 a n \frac{1-a_n^2}{2a_n} 2an1an2正负,即可确定出单调性.
    有时需要结合几个重要不等式考虑!

  (2) 作商:判断   a n + 1 a n \,\frac{a_{n+1}}{a_{n}} anan+1 ( a n > 0 a_n>0 an>0) 和   1   \,1\, 1的大小关系. 若大于等于   1 \,1 1,则数列单调增加;若小于等于   1 \,1 1,则数列单调减少.

  (3) 数学归纳法.

  如:证明   { a n }   \,\{a_n\}\, {an}单调递增,即对   ∀ n   \,\forall n\, n有, a n + 1 > a n a_{n+1}>a_n an+1>an.
    step 1.   n = 1   \,n=1\, n=1时, a 2 > a 1 a_2>a_1 a2>a1
    step 2. 假设   n = k   \,n=k\, n=k时, a k + 1 > a k   a_{k+1}>a_{k}\, ak+1>ak成立,
    step 3. 若能根据   a k + 1 > a k   \,a_{k+1}>a_{k}\, ak+1>ak推导出   a k + 2 > a k + 1 \,a_{k+2}>a_{k+1} ak+2>ak+1,则结论成立.

  (4) 连续化:若   { x n }   \,\{x_n\}\, {xn}通项已知,为   f ( n ) \,f(n) f(n),则可设为   f ( x )    ( x > 0 ) \,f(x)\;(x>0) f(x)(x>0). 若   f ′ ( x ) ⩾ 0 \,f'(x)\geqslant 0 f(x)0,则数列单调增加;若   f ′ ( x ) ⩽ 0 \,f'(x)\leqslant 0 f(x)0,则数列单调减少.

  (5) 结合重要不等式.

  (6) ⋆ {\color{Red} \star} 递推函数法

    step 1. 由递推关系   x n + 1 = f ( x n )   \,x_{n+1}=f(x_n)\, xn+1=f(xn)构造函数   y = f ( x )   \,y=f(x)\, y=f(x),计算   f ′ ( x ) \,f'(x) f(x).

  如: x n + 1 = 6 + x n ⇒ y = 6 + x x_{n+1}=\sqrt{6+x_n}\Rightarrow y=\sqrt{6+x} xn+1=6+xn y=6+x

    step 2. 若   f ′ ( x ) ⩾ 0 \,f'(x) \geqslant 0 f(x)0,则   { x n }   \,\{x_n\}\, {xn}单调,此时有:
      a. x 1 ⩾ x 2 x_1\geqslant x_2 x1x2,数列单调增加.
      b. x 1 ⩽ x 2 x_1\leqslant x_2 x1x2,数列单调减少.

  若   f ′ ( x ) ⩽ 0 \,f'(x) \leqslant 0 f(x)0,则数列不单调. 具体来说,此时奇偶子数列都是单调数列但单调性相反.

  注意
    (1) 此法证明数列单调性非常有效,几乎可以解决所有问题.
    (2) 在构造函数时,最好先确定   x   \,x\, x的范围(即数列的界),这有利于导数正负的判断.

  (7) 中值定理( L \text{L} L). 当递推关系出现   f ( Δ 1 ) − f ( Δ 2 ) \,f(\Delta_1)-f(\Delta_2) f(Δ1)f(Δ2),要重点考虑.

  (8) 预判数列的单调性:先算出数列前几项的值,大致判断增减性.

证明有界性的方法总结

  (1) 数学归纳法.
  (2) 结合重要不等式.

  如: a n + 1 = 1 2 ( a n + 1 a n ) ⩾ 1 a_{n+1}=\frac{1}{2}(a_n+\frac{1}{a_{n}}) \geqslant 1 an+1=21(an+an1)1.
     1 4 ( 3 x n + a x n 3 ) ⩾ x n ⋅ x n ⋅ x n ⋅ a x n 3 4 = a 4 \frac{1}{4}(3x_n+\frac{a}{x^3_n}) \geqslant \sqrt[4]{x_n \cdot x_n \cdot x_n \cdot \frac{a}{x_n^3}}=\sqrt[4]{a} 41(3xn+xn3a)4xnxnxnxn3a =4a .

  (3) 放缩.

  如: a n = 1 1 2 + 1 2 2 + . . . + 1 n 2 a_n=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2} an=121+221+...+n21,证明数列收敛.
    由   a n + 1 − a n = 1 ( n + 1 ) 2 > 0 \,a_{n+1}-a_n=\frac{1}{(n+1)^2}>0 an+1an=(n+1)21>0,确定数列单调增加.
    下面证数列有上界: a n = 1 1 ⋅ 1 + 1 2 ⋅ 2 + . . . + 1 n ⋅ n ⩽ 1 + 1 1 ⋅ 2 + . . . + 1 ( n − 1 ) ⋅ n = 2 − 1 n ⩽ 2 a_n=\frac{1}{1\cdot1}+\frac{1}{2\cdot2}+...+\frac{1}{n\cdot n}\leqslant 1+\frac{1}{1\cdot2}+...+\frac{1}{(n-1)\cdot n}=2-\frac{1}{n}\leqslant2 an=111+221+...+nn11+121+...+(n1)n1=2n12.    数列收敛.

  (4) ⋆ {\color{Red} \star} 预判数列的界:先尝试直接两边取极限求出极限值,此极限值必为数列的一个界. 此法也叫先斩后奏.

  如: a n + 1 = 2 + a n ⇒ A = 2 + A ⇒ A = 2 a_{n+1}=\sqrt{2+a_{n}} \Rightarrow A = \sqrt{2+A} \Rightarrow A=2 an+1=2+an A=2+A A=2. 那么在证明有界性时,就应先尝试证明 a n ⩽ 2 a_{n} \leqslant2 an2. 不需要靠猜,个别题目的界可能很复杂.

14 数列极限求解与极限存在性证明思路

(一) 已知数列通项

(1) 易算极限

  已知数列通项的易算极限,可直接通过海涅定理转换为函数极限求出.

  例. 求以下数列极限:
lim ⁡ n → ∞ [ n tan ( sin 1 n ) ] n 2 \lim\limits_{n\to\infty}\bigg[n\text{tan}(\text{sin}\frac{1}{n})\bigg]^{n^2} nlim[ntan(sinn1)]n2
  解:
    由海涅定理,令   x = 1 n    \,x=\frac{1}{n}\; x=n1(   x → 0 + \,x\to0^+ x0+),
lim ⁡ n → ∞ [ n tan ( sin 1 n ) ] n 2 = lim ⁡ x → 0 + [ tan ( sin x ) x ] 1 x 2 = lim ⁡ x → 0 + e 1 x 2 ln tan ( sin x ) x \lim\limits_{n\to\infty}\bigg[n\text{tan}(\text{sin}\frac{1}{n})\bigg]^{n^2}=\lim\limits_{x\to0^+}\bigg[\frac{\text{tan}(\text{sin}x)}{x}\bigg]^{\frac{1}{x^2}}=\lim\limits_{x\to0^+}e^{\frac{1}{x^2}\text{ln}\frac{\text{tan}(\text{sin}x)}{x}} nlim[ntan(sinn1)]n2=x0+lim[xtan(sinx)]x21=x0+limex21lnxtan(sinx)    其中, lim ⁡ x → 0 + 1 x 2 ln tan ( sin x ) x = lim ⁡ x → 0 + tan ( sin x ) − x x 3 \lim\limits_{x\to0^+}\frac{1}{x^2}\text{ln}\frac{\text{tan}(\text{sin}x)}{x}=\lim\limits_{x\to0^+}\frac{\text{tan}(\text{sin}x)-x}{x^3} x0+limx21lnxtan(sinx)=x0+limx3tan(sinx)x = lim ⁡ x → 0 + tan ( sin x ) − sin x x 3 + lim ⁡ x → 0 + sin x − x x 3 = 1 3 − 1 6 = 1 6 =\lim\limits_{x\to0^+}\frac{\text{tan}(\text{sin}x)-\text{sin}x}{x^3}+\lim\limits_{x\to0^+}\frac{\text{sin}x-x}{x^3}=\frac{1}{3}-\frac{1}{6}=\frac{1}{6} =x0+limx3tan(sinx)sinx+x0+limx3sinxx=3161=61    因此,
lim ⁡ n → ∞ [ n tan ( sin 1 n ) ] n 2 = e 1 6 \lim\limits_{n\to\infty}\bigg[n\text{tan}(\text{sin}\frac{1}{n})\bigg]^{n^2}=e^{\frac{1}{6}} nlim[ntan(sinn1)]n2=e61

(2) n   n\, n项和极限、 n   n\, n项积极限
可以求和(积)

  思路
    先求和(积),得到一个易算极限,再使用海涅定理求极限.

    对于   n   \,n\, n项和极限,常使用裂项等方法进行直接计算.

  例. 求   lim ⁡ n → ∞ [ 1 1 × 2 + 1 2 × 3 + . . . + 1 n × ( n + 1 ) ] \,\lim\limits_{n \to \infty}{[\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+...+\frac{1}{n \times (n+1)}]} nlim[1×21+2×31+...+n×(n+1)1]
  解: 1 1 × 2 + 1 2 × 3 + . . . + 1 n × ( n + 1 ) = n n + 1 \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+...+\frac{1}{n \times (n+1)}=\frac{n}{n+1} 1×21+2×31+...+n×(n+1)1=n+1n
    由海涅定理,令   x = n    ( x → + ∞ ) \,x=n\;(x\to+\infty) x=n(x+),则
     lim ⁡ n → ∞ [ 1 1 × 2 + 1 2 × 3 + . . . + 1 n × ( n + 1 ) ] = lim ⁡ n → ∞ n n + 1 = lim ⁡ x → + ∞ x x + 1 = 1 \lim\limits_{n \to \infty}{[\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+...+\frac{1}{n \times (n+1)}]}=\lim\limits_{n \to \infty}\frac{n}{n+1}=\lim\limits_{x \to +\infty}\frac{x}{x+1}=1 nlim[1×21+2×31+...+n×(n+1)1]=nlimn+1n=x+limx+1x=1

  裂项公式
1 n ( n + k ) = 1 k ( 1 n − 1 n + k ) \frac{1}{n(n+k)}=\frac{1}{k}\big(\frac{1}{n}-\frac{1}{n+k}\big) n(n+k)1=k1(n1n+k1)
     n   n\, n前面的系数不影响裂项公式的使用:
1 a n ( a n + k ) = 1 k ( 1 a n − 1 a n + k ) \frac{1}{an(an+k)}=\frac{1}{k}\big(\frac{1}{an}-\frac{1}{an+k}\big) an(an+k)1=k1(an1an+k1)
    分母两个因子的公差影响最后系数的值:
1 ( n − 2 k ) ( n + 3 k ) = 1 5 k ( 1 n − 1 n + k ) \frac{1}{(n-2k)(n+3k)}=\frac{1}{5k}\big(\frac{1}{n}-\frac{1}{n+k}\big) (n2k)(n+3k)1=5k1(n1n+k1)

    对于   n   \,n\, n项积极限,常见以下两种连锁化简的方式:
      (1) 平方差公式
        如: lim ⁡ n → ∞ ( 1 + x ) ( 1 + x 2 ) . . . ( 1 + x 2 n )   ( ∣ x ∣ < 1 ) \lim\limits_{n \to \infty}{(1+x)(1+x^2)...(1+x^{2^n})}\,(|x|<1) nlim(1+x)(1+x2)...(1+x2n)(x<1), 乘以 ( 1 − x ) (1-x) (1x).
      (2) sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin{2x} = 2\sin{x}\cos{x} sin2x=2sinxcosx
        如: lim ⁡ n → ∞ cos ⁡ x 2 ⋅ cos ⁡ x 4 ⋅ ⋅ ⋅ cos ⁡ x 2 n   ( x ≠ 0 ) \lim\limits_{n \to \infty} \cos{\frac{x}{2}}·\cos{\frac{x}{4}···\cos{\frac{x}{2^n}}}\, (x \neq 0) nlimcos2xcos4xcos2nx(x=0),分子分母同乘 2 sin ⁡ x 2 n 2\sin{\frac{x}{2^n}} 2sin2nx.

无法求和(积)

  思路
    根据题目特点选择使用夹逼准则定积分定义求解 (当然,也可以是二者结合).

  夹逼准则和定积分定义的选择

    直觉:关注每一项中“变”与“不变”的部分是否同阶.

      (1) 若不同阶:优先考虑夹逼准则.

  比如: lim ⁡ n → ∞ ( n n 2 + 1 + n n 2 + 2 + . . . + n n 2 + n ) \lim\limits_{n\to \infty}(\frac{n}{{\color{Blue}n^2}+{\color{Red}1}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}2}}+...+\frac{n}{{\color{Blue}n^2}+{\color{Red}n}}) nlim(n2+1n+n2+2n+...+n2+nn)    分母中不变的部分阶数为   2   \,2\, 2(蓝色),变的部分阶数为   1   \,1\, 1(红色). 二者不同,应考虑夹逼准则.
  
  又比如: lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 . . . + 1 n 2 + n ) \lim\limits_{n\to \infty}(\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}1}}}+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}2}}}...+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}n}}}) nlim(n2+1 1+n2+2 1...+n2+n 1)
    分母中不变的部分阶数为根号下的   2   \,2\, 2(蓝色),变的部分阶数为根号下的   1   \,1\, 1(红色). 二者不同,应考虑夹逼准则.

      (2) 若同阶:优先考虑定积分定义.

  比如: lim ⁡ n → ∞ ( 1 n + 1 + 1 n + 2 + . . . + 1 n + n ) \lim\limits_{n\to \infty}(\frac{1}{{\color{Blue}n}+{\color{Red}1}}+\frac{1}{{\color{Blue}n}+{\color{Red}2}}+...+\frac{1}{{\color{Blue}n}+{\color{Red}n}}) nlim(n+11+n+21+...+n+n1)
    分母中不变的部分阶数为   1   \,1\, 1(蓝色),变的部分阶数为   1   \,1\, 1(红色). 二者相同,应考虑定积分定义.
  
  又比如: lim ⁡ n → ∞ ( n n 2 + 1 2 + n n 2 + 2 2 + . . . + n n 2 + n 2 ) \lim\limits_{n\to \infty}(\frac{n}{{\color{Blue}n^2}+{\color{Red}1^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}2^2}}+...+\frac{n}{{\color{Blue}n^2}+{\color{Red}n^2}}) nlim(n2+12n+n2+22n+...+n2+n2n)
    分母中不变的部分阶数为   2   \,2\, 2(蓝色),变的部分阶数为   2   \,2\, 2(红色). 二者相同,应考虑定积分定义.

  以上的判断是基于:使用夹逼准则要求两侧放缩的极限值相同. 如果只是改变每一项中阶数较小的变的部分,并不会影响到极限值(此时变的部分与不变的部分阶数不同). 而如果变得部分和不变的部分阶数相同,说明这两个部分都是阶数最大的,因此会对最终的极限结果造成直接影响.

  若读者实在难以判断,请优先使用定积分定义尝试!因为定积分定义方法相对固定,可以很快判断出是否能否用其求解. 而夹逼准则使用的放缩思想非常灵活,就很难确定了.

  case 1. 使用夹逼准则

  例. 求下列极限: lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 . . . + 1 n 2 + n ) \lim\limits_{n\to \infty}(\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}1}}}+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}2}}}...+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}n}}}) nlim(n2+1 1+n2+2 1...+n2+n 1)  解:
    令   x n = lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 . . . + 1 n 2 + n )   \,x_n=\lim\limits_{n\to \infty}(\frac{1}{\sqrt{{n^2}+{1}}}+\frac{1}{\sqrt{{n^2}+{2}}}...+\frac{1}{\sqrt{{n^2}+{n}}})\, xn=nlim(n2+1 1+n2+2 1...+n2+n 1)
n n 2 + n ⩽ x n ⩽ n n 2 + 1 \frac{n}{\sqrt{n^2+n}}\leqslant x_n\leqslant\frac{n}{\sqrt{n^2+1}} n2+n nxnn2+1 n        (基本放缩思想之一: n ⋅ u min ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max n\cdot u_{\text{min}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} numinu1+u2+...+unnumax)
    由 lim ⁡ n → ∞ n n 2 + n = lim ⁡ n → ∞ n n 2 + 1 = 1 \lim\limits_{n\to \infty}\frac{n}{\sqrt{n^2+n}}=\lim\limits_{n\to \infty}\frac{n}{\sqrt{n^2+1}}=1 nlimn2+n n=nlimn2+1 n=1 lim ⁡ n → ∞ x n = 1 \lim\limits_{n\to \infty}x_n=1 nlimxn=1.

  case 2. 使用定积分定义

    公式
lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) = lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i − 1 n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{n}f\bigg(\frac{i}{n}\bigg)=\lim\limits_{n \to \infty}{\frac{1}{n}\sum\limits_{i=1}^{n}{f\bigg(\frac{i-1}{n}\bigg)}}=\int_{0}^{1}f(x)\text{d}x nlimn1i=1nf(ni)=nlimn1i=1nf(ni1)=01f(x)dx lim ⁡ n → ∞ 1 n ∑ i = 1 l n f ( i n ) = ∫ 0 k f ( x ) d x \lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{ln}f\bigg(\frac{i}{n}\bigg)=\int_{0}^{k}f(x)\text{d}x nlimn1i=1lnf(ni)=0kf(x)dx

  仅仅记住以上的公式对于要求较高的读者是绝对不够的. 因为考研已经考过并且套用公式过于简单,难以体现考生对定积分定义的深刻理解,恐不会再考. 请读者一定在理解定积分定义的基础上,继续掌握下面的通法.

   求解定积分定义求   n   \,n\, n项和极限的通法
    先将极限整理为   lim ⁡ n → ∞ 1 n ∑ i = 1 i f ( i , n )   \,\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{i=1}^{i}f(i,n)\, nlimn1i=1if(i,n)的形式,按以下三个步骤分析出定积分:

    step 1. 将极限中“变化的量”写为   x \,x x,得到被积函数.
    step 2. 变化的量的极限范围,就是积分区间.
    step 3. 观察积分区间分成了多少份,每一个小区间的区间长度为多少,决定是否在积分前补系数.

  注意:每个小曲边梯形并不一定使用右端点的函数值作为近似高度. 使用此方法可以无需考虑这一点. “变化的量”则是指提出   1 n   \,\frac{1}{n}\, n1后变形得到的和式中含   i   \,i\, i   n   \,n\, n的变化部分,

  例1. 求以下极限: lim ⁡ n → ∞ n n 2 + 1 2 + n n 2 + 2 2 + n n 2 + 4 2 + n n 2 + 6 2 . . . + n n 2 + ( 4 n ) 2 \lim\limits_{n\to\infty}\frac{n}{{\color{Blue}n^2}+{\color{Red}1^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}2^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}4^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}6^2}}...+\frac{n}{{\color{Blue}n^2}+{\color{Red}(4n)^2}} nlimn2+12n+n2+22n+n2+42n+n2+62n...+n2+(4n)2n  解:
    令   I = n n 2 + 1 2 + n n 2 + 2 2 + n n 2 + 4 2 + n n 2 + 6 2 . . . + n n 2 + ( 4 n ) 2 \,I=\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+4^2}+\frac{n}{n^2+6^2}...+\frac{n}{n^2+(4n)^2} I=n2+12n+n2+22n+n2+42n+n2+62n...+n2+(4n)2n

    由于改变收敛数列的有限项,不会改变数列的敛散性与极限值,
I = n n 2 + 2 2 + n n 2 + 4 2 + n n 2 + 6 2 + . . . + n n 2 + ( 4 n ) 2 = ∑ i = 1 2 n n n 2 + ( 2 i ) 2 = 1 n ∑ i = 1 2 n 1 1 + ( 2 i n ) 2 I=\frac{n}{n^2+2^2}+\frac{n}{n^2+4^2}+\frac{n}{n^2+6^2}+...+\frac{n}{n^2+(4n)^2}=\sum\limits_{i=1}^{2n}\frac{n}{n^2+(2i)^2}=\frac{1}{n}\sum\limits_{i=1}^{2n}\frac{1}{1+(\frac{2i}{n})^2} I=n2+22n+n2+42n+n2+62n+...+n2+(4n)2n=i=12nn2+(2i)2n=n1i=12n1+(n2i)21  /**
    使用通法的三步分析出定积分:
      step1. 将极限中“变化的量”写为   x \,x x,得到被积函数:
         x : 2 i n , f ( x ) = 1 1 + x 2 x:\frac{2i}{n},f(x) = \frac{1}{1+x^2} x:n2if(x)=1+x21
      step 2. 变化的量的极限范围,就是积分区间:
         lim ⁡ n → ∞ 2 ⋅ 1 2 n = 0 \lim\limits_{n\to\infty}\frac{2\cdot 1}{2n}=0 nlim2n21=0 lim ⁡ n → ∞ 2 ⋅ 2 n n = 4 \lim\limits_{n\to\infty}\frac{2\cdot 2n}{n}=4 nlimn22n=4,积分区间: [ 0 , 4 ] [0,4] [0,4]
      step 3. 观察积分区间分成了多少份,每一个小区间的区间长度为多少,决定是否在积分前补系数
        从求和符号可以看出积分区间被分为   2 n   \,2n\, 2n份,每个小区间的长度就应该为   2 n \,\frac{2}{n} n2,因此需补系数   2 \,2 2.
  **/
  于是, I = 1 2 ⋅ 2 n ∑ i = 1 2 n 1 1 + ( 2 i n ) 2 = 1 2 ∫ 0 4 1 1 + x 2 d x = 1 2 arctan 4 I=\frac{1}{2}\cdot\frac{2}{n}\sum\limits_{i=1}^{2n}\frac{1}{1+(\frac{2i}{n})^2}=\frac{1}{2}\int^4_0\frac{1}{1+x^2}\text{d}x=\frac{1}{2}\text{arctan}4 I=21n2i=12n1+(n2i)21=21041+x21dx=21arctan4

  例2. 求以下极限: lim ⁡ n → ∞ ( a 1 n − 1 ) ∑ k = 1 n [ a k n sin ( a 2 k − 1 2 n ) ] , ( a ≠ 0 ) \lim\limits_{n\to\infty}(a^{\frac{1}{n}}-1)\sum\limits_{k=1}^n\big[a^{\frac{k}{n}}\text{sin}(a^{\frac{2k-1}{2n}})\big],(a\neq 0) nlim(an11)k=1n[anksin(a2n2k1)](a=0)  解:
    令   I = lim ⁡ n → ∞ ( a 1 n − 1 ) ∑ k = 1 n [ a k n sin ( a 2 k − 1 2 n ) ]      ( a ≠ 0 ) \,I=\lim\limits_{n\to\infty}(a^{\frac{1}{n}}-1)\sum\limits_{k=1}^n\big[a^{\frac{k}{n}}\text{sin}(a^{\frac{2k-1}{2n}})\big]\;\;(a\neq 0) I=nlim(an11)k=1n[anksin(a2n2k1)](a=0)
    由   x → 0   \,x\to 0\, x0时, a x − 1 ∼ x ln a a^x-1\sim x\text{ln}a ax1xlna,得   n → ∞   \,n\to \infty\, n时,   a 1 n − 1 ∼ 1 n ⋅ ln a \,a^{\frac{1}{n}}-1\sim\frac{1}{n}\cdot\text{ln}a an11n1lna,于是: I = ln a lim ⁡ n → ∞ 1 n ∑ k = 1 n [ a k n sin ( a 2 k − 1 2 n ) ] = ln a lim ⁡ n → ∞ 1 n ∑ k = 1 n [ a 1 2 n a 2 k − 1 2 n sin ( a 2 k − 1 2 n ) ] = ln a lim ⁡ n → ∞ 1 n ∑ k = 1 n [ a 2 k − 1 2 n sin ( a 2 k − 1 2 n ) ] , I=\text{ln}a\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n\big[a^{\frac{k}{n}}\text{sin}(a^{\frac{2k-1}{2n}})\big]=\text{ln}a\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n\big[a^{\frac{1}{2n}}a^{\frac{2k-1}{2n}}\text{sin}(a^{\frac{2k-1}{2n}})\big]=\text{ln}a\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n\big[a^{\frac{2k-1}{2n}}\text{sin}(a^{\frac{2k-1}{2n}})\big], I=lnanlimn1k=1n[anksin(a2n2k1)]=lnanlimn1k=1n[a2n1a2n2k1sin(a2n2k1)]=lnanlimn1k=1n[a2n2k1sin(a2n2k1)]  /**
    使用通法的三步分析出定积分:
      step1. 将极限中“变化的量”写为   x \,x x,得到被积函数:
         x : 2 k − 1 2 n , f ( x ) = a x sin a x x:\frac{2k-1}{2n},f(x) = a^x\text{sin}a^x x:2n2k1f(x)=axsinax
      step 2. 变化的量的极限范围,就是积分区间:;
         lim ⁡ n → ∞ 2 ⋅ 1 − 1 2 n = 0 \lim\limits_{n\to\infty}\frac{2\cdot 1-1}{2n}=0 nlim2n211=0 lim ⁡ n → ∞ 2 ⋅ n − 1 2 n = 1 \lim\limits_{n\to\infty}\frac{2\cdot n-1}{2n}=1 nlim2n2n1=1,积分区间: [ 0 , 1 ] [0,1] [0,1]
      step 3. 观察积分区间分成了多少份,每一个小区间的区间长度为多少,决定是否在积分前补系数
        从求和符号可以看出积分区间被分为   n   \,n\, n份,每个小区间的长度为   1 \,1 1,因此无需补系数.
  **/
  于是, I = ln a ∫ 0 1 a x sin a x d x = ∫ 0 1 sin a x d ( a x ) = − cos a x ∣ 0 1 = cos 1 − cos a . I=\text{ln}a\int^1_0a^x\text{sin}a^x\text{d}x=\int^1_0\text{sin}a^x\text{d}(a^x)=-\text{cos}a^x\big|^1_0=\text{cos}1-\text{cos}a. I=lna01axsinaxdx=01sinaxd(ax)=cosax01=cos1cosa.

(二) 已知数列递推关系

  特征:题目未给出通项公式,而是给出递推关系: x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn). 常常需要先证明数列极限的存在性,再求之.

  基本思路
    step 1. 根据递推关系   x n + 1 = f ( x n ) \,x_{n+1}=f(x_n) xn+1=f(xn),证明数列极限存在,即   lim ⁡ n → ∞ x n = A \,\lim\limits_{n\to\infty}x_n=A nlimxn=A
    step 2. 对递推关系   x n + 1 = f ( x n )   \,x_{n+1}=f(x_n)\, xn+1=f(xn)两边取极限   n → ∞   \,n\to\infty\, n可得   A = f ( A ) \,A=f(A) A=f(A),解出   A \,A A.

  注意:方程   A = f ( A )   \,A=f(A)\, A=f(A)解出的极限值中可能包含增根,注意结合已知条件进行检验.

  证明选择
    数列单调:单调有界数列收敛定理.
    不单调:压缩映射定理.

15 重要结论

  (1) lim ⁡ n → ∞ a n = a ⇒ lim ⁡ n → ∞ ∣ a n ∣ = ∣ a ∣ . \lim\limits_{n \to \infty}{a_n=a} \Rightarrow \lim\limits_{n \to \infty}{|a_n|=|a|}. nliman=anliman=a.

  (2) lim ⁡ n → ∞ a n = 0 ⇔ lim ⁡ n → ∞ ∣ a n ∣ = 0 . \lim\limits_{n \to \infty}{a_n=0} \Leftrightarrow \lim\limits_{n \to \infty}{|a_n|=0}. nliman=0nliman=0.

  这是使用夹逼准则的常用结论. 证明一个数列极限为0,可以转化为证明其绝对值的极限为0. 因为   ∣ a n ∣   \,|a_n|\, an天然   ⩾ 0 \,\geqslant 0 0,所以用夹逼准则证明   ∣ a n ∣   \,|a_n|\, an极限存在时,只需再证明   ∣ a n ∣ ⩽ 0   \,|a_n|\leqslant0\, an0即可.

  (3) 若数列   { a n }   \,\{a_n\}\, {an}收敛,则其任何子列   { a n k }   \,\{a_{n_k}\}\, {ank}也收敛,且   lim ⁡ n → ∞ a n = lim ⁡ k → ∞ a n k   \,\lim\limits_{n \to \infty}{a_{n}}=\lim\limits_{k \to \infty}{a_{n_k}}\, nliman=klimank.

  逆否命题:只要原数列存在任一发散的子列,则原数列必定发散. 或存在两个子列收敛于不同的极限,则原数列必定发散.

  (4) 子列完整覆盖.
     lim ⁡ n → ∞ a n ∃ ⇔ lim ⁡ n → ∞ a 2 n \lim\limits_{n \to \infty}{a_{n}}\exist \Leftrightarrow \lim\limits_{n \to \infty}{a_{2n}} nlimannlima2n lim ⁡ n → ∞ a 2 n − 1   \lim\limits_{n \to \infty}{a_{2n-1}}\, nlima2n1存在且相等,反之不成立.
     lim ⁡ n → ∞ a n ∃ ⇔ lim ⁡ n → ∞ a 3 n \lim\limits_{n \to \infty}{a_{n}}\exist \Leftrightarrow \lim\limits_{n \to \infty}{a_{3n}} nlimannlima3n lim ⁡ n → ∞ a 3 n + 1   \lim\limits_{n \to \infty}{a_{3n+1}}\, nlima3n+1 lim ⁡ n → ∞ a 3 n + 2   \lim\limits_{n \to \infty}{a_{3n+2}}\, nlima3n+2存在且相等.

  即需保证各子列合在一起能构成完整的原数列,才有类似于上方的充要条件.

  (5) 关于有界:

    设   lim ⁡ x → ⋅ f ( x ) ∃ \,\lim\limits_{x\to\cdot}f(x)\exist xlimf(x),则当   x → ⋅   \,x\to\cdot\, x时, f ( x )   f(x)\, f(x)有界.

    设   f ( x )   \,f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上连续,则   f ( x )   \,f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上有界.

    有界函数与有界函数的和、差、积还是有界函数.

    若   f ′ ( x )   \,f'(x)\, f(x)在有限区间   ( a , b )   \,(a,b)\, (a,b)有界,则   f ( x )   \,f(x)\, f(x)   ( a , b )   \,(a,b)\, (a,b)上有界. (无穷区间无此关系)

  证明:设任一点   x 0 ∈ ( a , b )   \,x_0\in(a,b)\, x0(a,b),任意   x ∈ ( x 0 , b ) \,x\in(x_0,b) x(x0,b)
    由拉格朗日中值定理, f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 )    ( x 0 < ξ < x ) f(x)-f(x_0)=f'(\xi)(x-x_0)\;(x_0<\xi<x) f(x)f(x0)=f(ξ)(xx0)(x0<ξ<x)
     ⇒ ∣ f ( x ) ∣ = ∣ f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) ∣ ⩽ ∣ f ( x 0 ) ∣ + ∣ f ′ ( ξ ) ( x − x 0 ) ∣ \Rightarrow|f(x)|=|f(x_0)+f'(\xi)(x-x_0)|\leqslant|f(x_0)|+|f'(\xi)(x-x_0)| f(x)=f(x0)+f(ξ)(xx0)f(x0)+f(ξ)(xx0)
    因为   f ′ ( x )   \,f'(x)\, f(x)   ( a , b )   \,(a,b)\, (a,b)上有界,所以 ∣ f ( x 0 ) ∣ + ∣ f ′ ( ξ ) ( x − x 0 ) ∣ ⩽ ∣ f ( x 0 ) + K ( b − a ) ∣ |f(x_0)|+|f'(\xi)(x-x_0)|\leqslant |f(x_0)+K(b-a)| f(x0)+f(ξ)(xx0)f(x0)+K(ba),( K > 0 K>0 K>0).
    令   M = ∣ f ( x 0 ) + K ( b − a ) ∣ \,M=|f(x_0)+K(b-a)| M=f(x0)+K(ba),则   ∣ f ( x ) ∣ ⩽ M \,|f(x)|\leqslant M f(x)M.

Part 2 - 连续

1 连续的条件

  (1) 某点连续.
lim ⁡ x → x 0 f ( x ) = f ( x 0 ) ⇔ f ( x 0 − 0 ) = f ( x 0 + 0 ) = f ( x 0 ) \color{Purple}\lim\limits_{x\to x_0}f(x)=f(x_0)\Leftrightarrow f(x_0-0)=f(x_0+0)=f(x_0) xx0limf(x)=f(x0)f(x00)=f(x0+0)=f(x0)

  某点连续,可以推出   f ( x )   \,f(x)\, f(x)在该点邻域内有定义,但不能推出   f ( x )   \,f(x)\, f(x)在该点邻域内连续.
  另外, f ( x 0 − 0 )   f(x_0-0)\, f(x00)   f ( x 0 + 0 )   \,f(x_0+0)\, f(x0+0)   x 0   \,x_0\, x0左极限右极限的简单记法,按照定义其含义为:
f ( x 0 − 0 ) = lim ⁡ x → x 0 − f ( x ) , f ( x 0 + 0 ) = lim ⁡ x → x 0 + f ( x ) f(x_0-0)=\lim_{x\to x_0^-}f(x),f(x_0+0)=\lim_{x\to x_0^+}f(x) f(x00)=xx0limf(x)f(x0+0)=xx0+limf(x)
  左右极限相等,保证该点极限存在,左右极限相等且等于该点函数值,该点才连续.
  在同济七版教材中采用记法: f ( x 0 − ) f(x_0^-) f(x0) f ( x 0 + ) f(x_0^+) f(x0+). 以上记法均可使用.

  (2) 某邻域内连续.

     f ( x )   f(x)\, f(x)   x 0   \,x_0\, x0的某邻域   U δ ( x 0 )   \,U_\delta(x_0)\, Uδ(x0)内处处连续.

  某邻域内连续,可以推出   f ( x )   \,f(x)\, f(x)在该邻域内有定义和连续,但不能推出邻域内可导.

  (3) 某去心邻域内连续.

     f ( x )   f(x)\, f(x)   x 0   \,x_0\, x0的某去心邻域   U ˚ δ ( x 0 )   \,\mathring{U}_\delta(x_0)\, U˚δ(x0)内处处连续.

  某去心邻域内连续,可以推出   f ( x )   \,f(x)\, f(x)在该去心邻域内有定义和连续,但不能推出去心邻域内可导. 且   x 0   \,x_0\, x0处极限不一定存在.

2 间断点

间断点分类

  (1) 第一类间断点
     f ( x 0 − 0 ) 、 f ( x 0 + 0 )   f(x_0-0)、f(x_0+0)\, f(x00)f(x0+0)都存在.

条件进一步分为
f ( x 0 − 0 ) = f ( x 0 + 0 ) ≠ f ( x 0 ) f(x_0-0)=f(x_0+0)\neq f(x_0) f(x00)=f(x0+0)=f(x0)可去间断点
f ( x 0 − 0 ) ≠ f ( x 0 + 0 ) f(x_0-0)\neq f(x_0+0) f(x00)=f(x0+0)跳跃间断点

  (2) 第二类间断点
     f ( x 0 − 0 ) 、 f ( x 0 + 0 )   f(x_0-0)、f(x_0+0)\, f(x00)f(x0+0)至少一个不存在,可进一步分为无穷间断点振荡间断点.

间断点讨论思路

  解题步骤
    (1) 找出所有间断点:
       x = x 1 , x = x 2 , . . . x=x_1,x=x_2,... x=x1x=x2...   f ( x )   \,f(x)\, f(x)的间断点;
    (2) 对于每一个间断点   x i \,x_i xi
      先判断该点的左右极限是否存在.
      若左右极限任一不存在,
        则该间断点为第二类间断点(无穷间断点或振荡间断点).
      若左右极限存在,判断左右极限的关系.
         f ( x 0 − 0 ) = f ( x 0 + 0 ) f(x_0-0)=f(x_0+0) f(x00)=f(x0+0),为可去间断点.
         f ( x 0 − 0 ) ≠ f ( x 0 + 0 ) f(x_0-0)\neq f(x_0+0) f(x00)=f(x0+0),为条约间断点.

  识别间断点的方法
    主要有以下两种情况:
      case 1. 无定义点.

    (1) 分式的分母为   0 \,0 0.
    (2) 三角函数如   sin ⁡ x \,\sin{x} sinx sin ⁡ π x   \sin{\pi x}\, sinπx等出现在分母可以得到一系列间断点.
    (3) ? ∣ x − a ∣ \frac{?}{|x-a|} xa? ln ∣ x ∣   \text{ln}|x|\, lnx等分左右极限检查.
    (4) f ( x )   f(x)\, f(x)   a ? x − b   \,a^{\frac{?}{x-b}}\, axb?   a ? b − x \,a^{\frac{?}{b-x}} abx?,当   x → b   \,x \to b\, xb时,分左右极限检查.
    (5) arctan ⁡ a x \arctan \frac{a}{x} arctanxa分左右.
    (6) [ x ] [x] [x] x → n x\to n xn.

      case 2. 分段函数的分段点.

3 连续的性质

基本性质

  (1) 在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数.
  (2) 连续函数的复合函数仍然是连续函数.
  (3) 连续单调递增(递减)函数的反函数,也连续单调递增(递减).

最值 & 有界

  设 f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)C[a,b],则   f ( x )   \,f(x)\, f(x)   [ a , b ]   \,[a, b]\, [a,b]上必有界,可以取得最大值   M   \,M\, M和最小值   m \,m m.

   注意: f ( x ) ∈ C [ a , b ]   f(x) \in C[a, b]\, f(x)C[a,b]表示   f ( x )   \,f(x)\, f(x)在闭区间   [ a , b ]   \,[a, b]\, [a,b]连续. 考试时不能直接这么写,需要写明!

     f ( x )   \,f(x)\, f(x)开区间   ( a , b )   \,(a,b)\, (a,b)内连续,不能推出   f ( x )   \,f(x)\, f(x)   ( a , b )   \,(a,b)\, (a,b)内有界!除非   f ( x )   \,f(x)\, f(x)还同时满足:   f ( a + 0 ) \,f(a+0) f(a+0) f ( b − 0 )   f(b-0)\, f(b0)存在,则   f ( x )   \,f(x)\, f(x)   ( a , b )   \,(a,b)\, (a,b)内有界.

零点定理

  设   f ( x ) ∈ C [ a , b ] \,f(x) \in C[a, b] f(x)C[a,b],且   f ( a ) ⋅ f ( b ) < 0 \,f(a)\cdot f(b)<0 f(a)f(b)<0,则   ∃   c ∈ ( a , b ) \,\exist\,c \in (a, b) c(a,b),使   f ( c ) = 0 \,f(c) = 0 f(c)=0.

  推广零点定理
    设   f ( x ) ∈ C [ a , + ∞ ) \,f(x) \in C[a, +\infty) f(x)C[a,+),且   f ( a ) ⋅ lim ⁡ x → + ∞ f ( x ) < 0 \,f(a)\cdot \lim\limits_{x \to +\infty}f(x)<0 f(a)x+limf(x)<0,则   ∃   c ∈ ( a , + ∞ ) \,\exist\,c \in (a, +\infty) c(a,+),使 f ( c ) = 0 f(c) = 0 f(c)=0.

  题目特征 f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)C[a,b] ∃   ξ ∈ ( a , b ) \exist\,\xi \in(a, b) ξ(a,b) (开区间).

  零点定理在证明题中的应用见:中值定理

介值定理

  设   f ( x ) ∈ C [ a , b ] \,f(x) \in C[a, b] f(x)C[a,b] ∀   η ∈ [ m , M ] \forall\, \eta \in [m, M] η[m,M] ∃   ξ ∈ [ a , b ] \exist\,\xi\in[a,b] ξ[a,b],使   f ( ξ ) = η \,f(\xi)=\eta f(ξ)=η.

  题目特征
     f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)C[a,b] i f { ξ ∈ [ a , b ] ; 函 数 值 之 和 . if\begin{cases} \xi \in [a, b];\\ 函数值之和.\\ \end{cases} if{ξ[a,b].

    例: f ( x ) ∈ C [ 0 , 1 ] f(x) \in C[0, 1] f(x)C[0,1] f ( 0 ) + 2 f ( 1 ) = 3 f(0)+2f(1)=3 f(0)+2f(1)=3,证   ∃ ξ ∈ [ a , b ] \,\exist \xi \in[a, b] ξ[a,b],使 f ( ξ ) = 1 f(\xi)=1 f(ξ)=1.

  介值定理在证明题中的应用见:中值定理

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值