文章目录
Part 1 - 极限
1 无穷小比较
设 α , β \,\alpha,\beta\, α,β是自变量同一变化过程中的无穷小,
(1) 若
lim
β
α
=
0
\,\lim\frac{\beta}{\alpha}=0
limαβ=0,则称
β
\,\beta\,
β是比
α
\,\alpha\,
α高阶的无穷小,记
β
=
o
(
α
)
\beta=o(\alpha)
β=o(α)
可以理解为 β \,\beta\, β趋近于 0 \,0\, 0的速度比 α \,\alpha\, α快,使得极限为 0 \,0 0.
(2) 若 lim β α = ∞ \,\lim\frac{\beta}{\alpha}=\infty limαβ=∞,则称 β \,\beta\, β是比 α \,\alpha\, α低阶的无穷小;
(3) 若
lim
β
α
=
C
≠
0
\,\lim\frac{\beta}{\alpha}=C\neq 0
limαβ=C=0,则称
β
\,\beta\,
β是
α
\,\alpha\,
α的同阶无穷小,记
β
=
O
(
α
)
\beta=O(\alpha)
β=O(α)
(4) 若 lim β α k = C ≠ 0 \,\lim\frac{\beta}{\alpha^k}=C\neq 0 limαkβ=C=0,则称 β \,\beta\, β是 α \,\alpha\, α的 k \,k\, k阶无穷小;
(5) 若 lim β α = 1 \,\lim\frac{\beta}{\alpha}=1 limαβ=1,则称 β \,\beta\, β是 α \,\alpha\, α的等价无穷小,记 α ∼ β \,\alpha\sim\beta α∼β.
注意:
(1) 并非任意两个无穷小都可以进行比阶.
例如: x → 0 \,x\to0\, x→0的无穷小 x 2 sin 1 x \,x^2\text{sin}\frac{1}{x}\, x2sinx1和 x 2 \,x^2\, x2 ( x → 0 ) (x\to 0)\, (x→0),二者无法比阶,因为 lim x → 0 sin 1 x \,\lim\limits_{x\to0}\text{sin}\frac{1}{x}\, x→0limsinx1不存在.
(2) f ( x ) f(x)\, f(x)是 g ( x ) \,g(x)\, g(x)的高阶无穷小,并不意味着 g ( x ) \,g(x)\, g(x)就是 f ( x ) \,f(x)\, f(x)的低阶无穷小.
例如:当 x → 0 \,x\to 0\, x→0时, x 2 sin 1 x x^2\text{sin}\frac{1}{x}\, x2sinx1是 x \,x\, x的高阶无穷小,但反过来不无法比阶.
2 无穷大比较
当
n
→
∞
\,n \to \infty\,
n→∞时,下列数列无穷大的阶数由低到高排序:
ln
n
\ln{n}
lnn,
n
α
(
α
>
0
)
n^{\alpha}(\alpha >0)
nα(α>0),
n
β
(
β
>
α
>
0
)
n^{\beta}(\beta>\alpha>0)
nβ(β>α>0),
a
n
(
a
>
1
)
a^n(a>1)
an(a>1),
n
n
n^n
nn
当
x
→
+
∞
\,x \to +\infty\,
x→+∞时,下列函数无穷大的阶数由低到高排序:
ln
x
\ln{x}
lnx,
x
α
(
α
>
0
)
x^{\alpha}(\alpha >0)
xα(α>0),
x
β
(
β
>
α
>
0
)
x^{\beta}(\beta>\alpha>0)
xβ(β>α>0),
a
x
(
a
>
1
)
a^x(a>1)
ax(a>1),
x
x
x^x
xx
注意:
(1) 数列极限的
n
→
∞
\,n \to \infty\,
n→∞的无穷专指正无穷(因为
n
\,n\,
n在高等数学中专指自然数),而函数极限的
x
→
+
∞
\,x\to+\infty\,
x→+∞必须标明正负号.
(2) 无穷大的比较可以转换为无穷小的比较:恒不为零的无穷小的倒数是无穷大.
(3) 读者需要区分无穷大与无界的差异. 对于任意大的正数
M
\,M
M,无穷大是邻域内任意一点取值对应函数值均大于
M
\,M
M;无界则是存在一点取值对应函数值均大于
M
\,M
M.
3 无穷小的计算规则
(1) 有限个无穷小的和还是无穷小.
(2) 有限个无穷小的乘积还是无穷小.
(3) 有界函数与无穷小的乘积是无穷小.
第 (3) 点非常重要!其实使用十分广泛. 比如判断形如 x a sin 1 x \,x^a\text{sin}\frac{1}{x} xasinx1、 x a cos 1 x ( x → 0 ) \,x^a\text{cos}\frac{1}{x}\,(x\to0)\, xacosx1(x→0)这样带振荡间断点的极限.
(4) 基本运算规则 ( m m m、 n n\, n为正整数):
o ( x m ) ± o ( x n ) = o ( x min { m , n } ) ( m ≠ n ) o(x^m)\pm o(x^n)=o(x^{\text{min}\{m,n\}})\;\;\;({\color{Red}m\neq n}) o(xm)±o(xn)=o(xmin{m,n})(m=n)
次数小的说了算. 同理,无穷小比较,则是次数大的说了算.
o ( x m ) ⋅ o ( x n ) = o ( x m + n ) o(x^m)\cdot o(x^n)=o(x^{m+n}) o(xm)⋅o(xn)=o(xm+n) x m ⋅ o ( x n ) = o ( x m + n ) x^m\cdot o(x^n)=o(x^{m+n}) xm⋅o(xn)=o(xm+n) o ( x m ) = o ( k x m ) = k ⋅ o ( x m ) ( k ≠ 0 ) o(x^m)=o(kx^m)=k\cdot o(x^{m})\;\;\;(k\neq 0) o(xm)=o(kxm)=k⋅o(xm)(k=0)
系数并不影响无穷小的阶数.
o ( x m ) x n = o ( x m − n ) ( m ⩾ n ) \frac{o(x^m)}{x^n}=o(x^{m-n})\;\;\;({\color{Red}m\geqslant n}) xno(xm)=o(xm−n)(m⩾n)
(5) 两个同阶无穷小相加减,其结果的阶数大于或等于原无穷小的阶数.
当 x → 0 \,x\to0\, x→0时,
两个同阶无穷小相减的情况:
a. 与原无穷小阶数同: 2 x 2x\, 2x与 x \,x\, x都是 x \,x\, x的同阶无穷小, 2 x − x ∼ x 2x-x\sim x 2x−x∼x;
b. 比原无穷小阶数大: x x\, x与 sin x \,\text{sin}x\, sinx都是 x \,x\, x的同阶无穷小, x − sin x ∼ 1 6 x 3 x-\text{sin}x\sim\frac{1}{6}x^3 x−sinx∼61x3.
两个同阶无穷小相加的情况:
a. 与原无穷小阶数同: 2 x 2x\, 2x与 x \,x\, x都是 x \,x\, x的同阶无穷小, 2 x + x ∼ 3 x 2x+x\sim 3x 2x+x∼3x;
b. 比原无穷小阶数大: 2 x 3 − x 2x^3-x\, 2x3−x与 x − x 3 \,x-x^3\, x−x3都是 x \,x\, x的同阶无穷小, ( 2 x 3 − x ) + ( x − x 3 ) ∼ x 3 (2x^3-x)+(x-x^3)\sim x^3 (2x3−x)+(x−x3)∼x3.
(6) (无穷小的导数) 设 f ( x ) \,f(x)\, f(x)在 x = a \,x=a\, x=a处 n \,n\, n阶可导,若 x → a \,x\to a\, x→a时, f ( x ) \,f(x)\, f(x)是 ( x − a ) \,(x-a)\, (x−a)的 n ( n ⩾ 2 ) \,n\,(n\geqslant 2)\, n(n⩾2)阶无穷小,则 f ′ ( x ) \,f'(x)\, f′(x)是 ( x − a ) \,(x-a)\, (x−a)的 n − 1 \,n-1\, n−1阶无穷小.
(7) (无穷小的原函数) 设 f ( x ) \,f(x)\, f(x)连续,若 x → a x\to a\, x→a时, f ( x ) \,f(x)\, f(x)是 ( x − a ) \,(x-a)\, (x−a)的 n \,n\, n阶无穷小,则 ∫ a x f ( t ) d t \,\int^x_af(t)\text{d}t\, ∫axf(t)dt是 ( x − a ) \,(x-a)\, (x−a)的 n + 1 \,n+1\, n+1阶无穷小.
4 等价无穷小
基础:
x
∼
sin
x
∼
tan
x
∼
arcsin
x
∼
arctan
x
∼
e
x
−
1
∼
ln
(
1
+
x
)
x\sim \sin{x} \sim \tan{x} \sim \arcsin{x} \sim \arctan{x} \sim e^x-1 \sim \ln(1+x)
x∼sinx∼tanx∼arcsinx∼arctanx∼ex−1∼ln(1+x)
1
−
cos
x
∼
1
2
x
2
1-\cos{x} \sim \frac{1}{2}x^2
1−cosx∼21x2
1
−
cos
a
x
∼
a
2
x
2
1-\cos^{a}{x} \sim \frac{a}{2}x^2
1−cosax∼2ax2
(
1
+
x
)
a
−
1
∼
a
x
(
a
≠
0
)
(1+x)^a-1 \sim ax(a\neq 0)
(1+x)a−1∼ax(a=0)
a
x
−
1
∼
x
ln
a
(
a
>
0
且
a
≠
1
)
a^x-1 \sim x \ln{a}(a>0\,且\,a\neq1)
ax−1∼xlna(a>0且a=1)
进阶:
x
−
ln
(
1
+
x
)
∼
1
2
x
2
x-\ln{(1+x)} \sim \frac{1}{2}x^2
x−ln(1+x)∼21x2
x
−
sin
x
∼
1
6
x
3
x-\text{sin}x\sim\frac{1}{6}x^3
x−sinx∼61x3
x
−
arcsin
x
∼
−
1
6
x
3
x-\text{arcsin}x\sim-\frac{1}{6}x^3
x−arcsinx∼−61x3
x
−
tan
x
∼
−
1
3
x
3
x-\text{tan}x\sim-\frac{1}{3}x^3
x−tanx∼−31x3
x
−
arctan
x
∼
1
3
x
3
x-\text{arctan}x\sim\frac{1}{3}x^3
x−arctanx∼31x3
进阶部分适当记忆即可,可以提升求极限的速度. 如果忘记,可以通过洛必达法则或麦克劳林公式推出. 尤其是后面四个,容易混淆: sin \,\text{sin} sin、 arcsin \text{arcsin}\, arcsin的分母是 3 ! \,3!\, 3!,而 tan \,\text{tan} tan、 arctan \text{arctan}\, arctan的分母是 3 \,3 3. 正负号的记忆读者可以思考 y = x \,y=x\, y=x与三角函数图像之间的大小关系.
注意:
(1)
x
x
x、
sin
x
\sin{x}
sinx、
tan
x
\tan{x}
tanx、
arcsin
x
\arcsin{x}
arcsinx、
arctan
x
\arctan{x}\,
arctanx任意两者之差为
3
\,{\color{Red} 3} \,
3阶无穷小.
(2) 对分式使用等价无穷小时,如果分子分母中出现加减运算,需确保使用前后分子与分母的精度相同 (相关证明感兴趣的读者可以参考其他文章).
精度即无穷小的阶数,后文会继续使用这种说法.
这一点非常重要,常常是初学者感到疑惑的地方. 考虑下面这个极限:
lim x → 0 x − sin x x 3 \lim_{x\to 0}\frac{x-\text{sin}x}{x^3} x→0limx3x−sinx由于 x − sin x \,x-\text{sin}x\, x−sinx是加减运算,所以不能直接通过等价无穷小使之成为:
lim x → 0 x − x x 3 \lim_{x\to 0}\frac{x-{\color{Red}x}}{x^3} x→0limx3x−x这是由于分母 x 3 \,x^3\, x3是一个 3 \,3\, 3阶无穷小,因此分子也必须是 3 \,3\, 3阶无穷小. 上面这种替换使得分子精度变为 1 \,1 1,不可取.
实际上,通过麦克劳林公式展开或记忆常见等价无穷小可知: x − sin x ∼ 1 6 x 2 \,x-\text{sin}x\sim\frac{1}{6}x^2 x−sinx∼61x2,因此正确解法为:
lim x → 0 x − sin x x 3 = lim x → 0 1 6 x 3 x 3 = 1 6 \lim_{x\to 0}\frac{x-\text{sin}x}{x^3}=\lim_{x\to 0}\frac{\frac{1}{6}x^3}{x^3}=\frac{1}{6} x→0limx3x−sinx=x→0limx361x3=61
(3) 当无穷小作为因子时,在求极限时可以放心使用等价无穷小替换,无需考虑精度.
(4) 对于变积分限函数,积分限与被积函数均可使用等价无穷小,如:
∫
0
e
x
2
−
1
sin
t
2
t
d
t
∼
∫
0
x
2
t
d
t
=
x
4
2
\int_{0}^{e^{x^2}-1}\frac{\sin{t^2}}{t}\text{d}t \sim \int_{0}^{x^2}t\text{d}t=\frac{x^4}{2}
∫0ex2−1tsint2dt∼∫0x2tdt=2x4
5 重要极限
lim Δ → 0 sin Δ Δ = 1 \lim\limits_{\Delta \to 0}{\frac{\sin{\Delta}}{\Delta}=1} Δ→0limΔsinΔ=1 lim Δ → 0 ( 1 + Δ ) 1 Δ = e \lim\limits_{\Delta \to 0}{(1+\Delta)^{\frac{1}{\Delta}}}=e Δ→0lim(1+Δ)Δ1=e lim n → ∞ n n = 1 , lim x → + ∞ x 1 x = 1 \lim\limits_{n \to \infty}{\sqrt[n]{n}=1},\lim\limits_{x \to +\infty}{x^{\frac{1}{x}}=1} n→∞limnn=1,x→+∞limxx1=1 lim x → 0 x x = 1 \lim\limits_{x \to0}{x^x=1} x→0limxx=1 Δ → 0 ⇒ { ln ( 1 + Δ ) ∼ Δ , e Δ − 1 ∼ Δ , ( 1 + Δ ) a ∼ a Δ ( a 为常数 ) . \Delta \rightarrow 0 \Rightarrow \begin{cases} \ln(1+\Delta)\sim \Delta,\\ e^{\Delta}-1 \sim \Delta\;,\\ (1+\Delta)^a \sim a\Delta\;\; (a\text{为常数}).\\ \end{cases} Δ→0⇒⎩⎪⎨⎪⎧ln(1+Δ)∼Δ,eΔ−1∼Δ,(1+Δ)a∼aΔ(a为常数).
6 几个重要不等式
最最最基本的不等式:
0
<
a
a
+
b
<
1
,
0
<
b
a
+
b
<
1
(
a
,
b
>
0
)
0<\frac{a}{a+b}<1,0<\frac{b}{a+b}<1\;\;\;(a,\,b>0)
0<a+ba<1,0<a+bb<1(a,b>0)
均值不等式:
2
1
a
+
1
b
⩽
a
b
⩽
a
+
b
2
⩽
a
2
+
b
2
2
(
a
,
b
>
0
)
\frac{2}{\frac{1}{a}+\frac{1}{b}}\leqslant\sqrt{ab}\leqslant\frac{a+b}{2}\leqslant \sqrt{\frac{a^2+b^2}{2}}\;\;(a,b>0)
a1+b12⩽ab⩽2a+b⩽2a2+b2(a,b>0)
n
∑
i
=
1
n
1
x
i
⩽
∏
i
=
0
n
x
i
n
⩽
1
n
∑
i
=
1
n
x
i
⩽
1
n
∑
i
=
1
n
x
i
2
(
x
i
>
0
)
\frac{n}{\sum\limits_{i=1}^n\frac{1}{x_i}}\leqslant\sqrt[n]{\prod_{i=0}^nx_i}\leqslant\frac{1}{n}\sum_{i=1}^nx_i\leqslant \sqrt{\frac{1}{n}\sum_{i=1}^nx_i^2} \;\;(x_i>0)
i=1∑nxi1n⩽ni=0∏nxi⩽n1i=1∑nxi⩽n1i=1∑nxi2(xi>0)
均值不等式在元素相等时取等号.
其规律是(从左至右):调和平均值 ⩽ \,\leqslant\, ⩽几何平均值 ⩽ \,\leqslant\, ⩽算术平均值 ⩽ \,\leqslant\, ⩽平方平均值.
自然对数、自然指数不等式: x 1 + x < ln ( 1 + x ) < x ( x > 0 ) \frac{x}{1+x} < \ln(1+x) < x\; (x>0) 1+xx<ln(1+x)<x(x>0) e x < 1 + x ( x ≠ 0 ) e^x<1+x\;(x \neq 0) ex<1+x(x=0)
三角函数不等式: sin x < x ( x > 0 ) \sin{x}<x\;(x>0) sinx<x(x>0) sin x < x < tan x ( 0 < x < π 2 ) \sin{x}<x<\tan{x}\;(0<x<\frac{\pi}{2}) sinx<x<tanx(0<x<2π) tan x < x < sin x ( − π 2 < x < 0 ) \tan{x}<x<\sin{x}\;(-\frac{\pi}{2}<x<0) tanx<x<sinx(−2π<x<0)
绝对值不等式: ∣ ∣ x ∣ − ∣ y ∣ ∣ ⩽ ∣ x ± y ∣ ⩽ ∣ x ∣ + ∣ y ∣ \big||x|-|y|\big|\leqslant\big|x\pm y\big|\leqslant|x|+|y| ∣∣∣x∣−∣y∣∣∣⩽∣∣x±y∣∣⩽∣x∣+∣y∣
取整不等式: x − 1 < [ x ] ⩽ x x-1<[x]\leqslant x x−1<[x]⩽x [ x ] ⩽ x < [ x ] + 1 [x]\leqslant x<[x]+1 [x]⩽x<[x]+1
7 洛必达法则
洛必达法则涉及求导运算,关于求导相关内容读者可见一元微分学.
洛必达法仅针对 0 0 \,\frac{0}{0}\, 00型和 ∞ ∞ \,\frac{\infty}{\infty}\, ∞∞型两种未定式极限的计算方法. 其他类型的未定式极限不能直接使用洛必达法则.下 面仅以 0 0 \,\frac{0}{0}\, 00型为例, ∞ ∞ \frac{\infty}{\infty}\, ∞∞型使用方法和条件类似.
∞ ⋅ 0 \infty\cdot 0\, ∞⋅0型极限可转化为二者之一再使用洛必达法则.
结论:
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
\color{Blue}\lim\limits_{x\to a} \frac{f(x)}{g(x)}=\lim\limits_{x\to a} \frac{f'(x)}{g'(x)}
x→alimg(x)f(x)=x→alimg′(x)f′(x)
条件:
(1) lim x → a f ( x ) = lim x → a g ( x ) = 0 \lim\limits_{x\to a} f(x)=\lim\limits_{x\to a} g(x)=0 x→alimf(x)=x→alimg(x)=0;
条件(1)保证未定式为 0 0 \,\frac{0}{0}\, 00型.
(2) 在点 a \,a\, a的去心邻域内, f ′ ( x ) f'(x) f′(x)、 g ′ ( x ) g'(x)\, g′(x)均存在,且 g ′ ( x ) ≠ 0 \,g'(x)\neq 0 g′(x)=0;
条件(2)是保证 lim x → a f ( x ) g ( x ) \,\lim\limits_{x\to a} \frac{f(x)}{g(x)}\, x→alimg(x)f(x)存在. 若 f ′ ( x ) \,f'(x) f′(x)、 g ′ ( x ) g'(x)\, g′(x)任一不存在或 g ′ ( x ) = 0 \,g'(x)=0 g′(x)=0, lim x → a f ′ ( x ) g ′ ( x ) \lim\limits_{x\to a} \frac{f'(x)}{g'(x)}\, x→alimg′(x)f′(x)便没有意义. 如: lim x → ∞ x + cos x x \lim\limits_{x\to \infty}\frac{x+\text{cos}x}{x} x→∞limxx+cosx
(3) lim x → a f ′ ( x ) g ′ ( x ) = A \lim\limits_{x\to a} \frac{f'(x)}{g'(x)}=A x→alimg′(x)f′(x)=A,其中 A \,A\, A可为实数或 ∞ \,\infty ∞.
条件(3)非常重要,在处理抽象函数时极易忽视. 极限很有可能满足条件(1)和条件(2),但不满足条件(3),导致无法使用洛必达法则.
例如: f ( x ) f(x)\, f(x)在 x = 0 \,x=0\, x=0的某邻域内可导,且 lim x → 0 f ( x ) x 2 = 2 \,\lim\limits_{x\to 0}\frac{f(x)}{x^2}=2 x→0limx2f(x)=2,问能够推出 lim x → 0 f ′ ( x ) x = 4 \,\lim\limits_{x\to 0}\frac{f'(x)}{x}=4\, x→0limxf′(x)=4?
答案是不能的!题目中的极限虽然满足条件(1)和条件(2),但条件(3)却不一定满足. 虽然 f ′ ( x ) \,f'(x)\, f′(x)存在,但 lim x → 0 f ′ ( x ) x \,\lim\limits_{x\to 0}\frac{f'(x)}{x}\, x→0limxf′(x)仍可能不存在 (具体来说, f ′ ( x ) f'(x)\, f′(x)在除以 x \,x\, x以后可能导致极限振荡不存在,即使得极限既非实数也非 ∞ \,\infty ∞). 请读者一定理解清楚这一点!
注意:
(1) 洛必达法则建议在计算的中后期使用. 对复杂式子直接使用洛必达,可能导致求导运算量非常巨大.
(2) 洛必达法则一定要注意使用条件. 尤其小心条件(3). 当题目仅给出导函数存在条件,但并未说明导函数连续或导函数极限存在时,慎用洛必达法则.
(3) 只要条件满足,洛必达法则可以连续多次使用.
lim x → x 0 f ( x ) ( x − x 0 ) m \lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, x→x0lim(x−x0)mf(x)问题总结
如前所述,洛必达法则的条件(3)非常容易忽视. 而在选择题中,经常需要对形如 lim x → x 0 f ( x ) ( x − x 0 ) m \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, x→x0lim(x−x0)mf(x)的条件进行处理. 下面给出如何快速确定在不同导数条件下,对该极限能使用多少次洛必达法则.
问题:对于 lim x → x 0 f ( x ) ( x − x 0 ) m \,\color{Blue}\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m} x→x0lim(x−x0)mf(x),仅满足条件 f ( x 0 ) = f ′ ( x 0 ) = . . . = f ( n ) ( x 0 ) = 0 \,\color{Blue}f(x_0)=f'(x_0)=...=f^{(n)}(x_0)=0 f(x0)=f′(x0)=...=f(n)(x0)=0,可以使用多少次洛必达法则?(使用多少次洛必达法则不会失效)
若题目还满足其他额外条件,后续结论不适用. 条件 f ( x 0 ) = f ′ ( x 0 ) = . . . = f ( n ) ( x 0 ) = 0 \,f(x_0)=f'(x_0)=...=f^{(n)}(x_0)=0\, f(x0)=f′(x0)=...=f(n)(x0)=0保证了洛必达 0 0 \,\frac{0}{0}\, 00型未定式的条件.
结论:
(1) 设
f
(
x
)
\,f(x)\,
f(x)
n
n\,
n阶连续可导 (即导函数连续).
case 1:若
n
⩾
m
\,\color{Blue}n\geqslant m
n⩾m,则可对
lim
x
→
x
0
f
(
x
)
(
x
−
x
0
)
m
\,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\,
x→x0lim(x−x0)mf(x)使用
m
\,m\,
m次洛必达法则,即:
lim
x
→
x
0
f
(
x
)
(
x
−
x
0
)
m
=
lim
x
→
x
0
f
′
(
x
)
m
⋅
(
x
−
x
0
)
m
−
1
=
.
.
.
=
lim
x
→
x
0
f
(
m
)
(
x
)
m
!
=
f
(
m
)
(
x
)
m
!
\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}=\lim\limits_{x\to x_0}\frac{f'(x)}{m\cdot (x-x_0)^{m-1}}=...=\lim\limits_{x\to x_0}\frac{f^{(m)}(x)}{m!}=\frac{f^{(m)}(x)}{m!}
x→x0lim(x−x0)mf(x)=x→x0limm⋅(x−x0)m−1f′(x)=...=x→x0limm!f(m)(x)=m!f(m)(x)
case 2:若 n < m \,\color{Blue}n< m n<m,则对 lim x → x 0 f ( x ) ( x − x 0 ) m \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, x→x0lim(x−x0)mf(x)一次洛必达法则也不能使用!
为便于记忆,可将 n ⩾ m \,n\geqslant m\, n⩾m理解为“上面压得住下面”, n < m n< m\, n<m理解为“上面压不住下面”.
(2) 设 f ( x ) \,f(x)\, f(x) n n\, n阶可导.
case 1:若 n − 1 ⩾ m \,\color{Blue}n-1\geqslant m n−1⩾m,则可对 lim x → x 0 f ( x ) ( x − x 0 ) m \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, x→x0lim(x−x0)mf(x)使用 m \,m\, m次洛必达法则.
因为 f ( x ) \,f(x)\, f(x)若 n \,n\, n阶可导,则 f ( x ) \,f(x)\, f(x)的 n − 1 \,n-1\, n−1阶导数必连续. 转换为结论(1)中 case 1 的情况.
case 2:若 n = m \,\color{Blue}n = m n=m,则可对 lim x → x 0 f ( x ) ( x − x 0 ) m \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, x→x0lim(x−x0)mf(x)使用 m − 1 \,m-1\, m−1次洛必达法则,即: lim x → x 0 f ( x ) ( x − x 0 ) m = lim x → x 0 f ′ ( x ) m ⋅ ( x − x 0 ) m − 1 = . . . = lim x → x 0 f ( m − 1 ) ( x ) m ! ⋅ ( x − x 0 ) \lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}=\lim\limits_{x\to x_0}\frac{f'(x)}{m\cdot (x-x_0)^{m-1}}=...=\lim\limits_{x\to x_0}\frac{f^{(m-1)}(x)}{m!\cdot (x-x_0)} x→x0lim(x−x0)mf(x)=x→x0limm⋅(x−x0)m−1f′(x)=...=x→x0limm!⋅(x−x0)f(m−1)(x)
若要继续求出 n ( = m ) \,n(=m)\, n(=m)阶导数,需要额外再使用一次导数定义进行计算:
f ( n ) ( x 0 ) = lim x → x 0 f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 f^{(n)}(x_0)=\lim\limits_{x\to x_0}\frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0} f(n)(x0)=x→x0limx−x0f(n−1)(x)−f(n−1)(x0)
case 3:若 n + 1 ⩽ m \,\color{Blue}n+1\leqslant m n+1⩽m,则对 lim x → x 0 f ( x ) ( x − x 0 ) m \,\lim\limits_{x\to x_0}\frac{f(x)}{(x-x_0)^m}\, x→x0lim(x−x0)mf(x)一次洛必达法则也不能使用.
8 求解不定型极限的基本思路
有的极限可以直接看出或直接代入求出,但有的极限代入后则会出现无穷或使分式无意义的情况,后者这种极限就称为不定型极限(或称未定式). 不定型极限必须先进行变形才能计算. 具体地,不定定极限包括以下七种类型:
0 0 \frac{0}{0}\, 00型、 ∞ ∞ \frac{\infty}{\infty}\, ∞∞型、 1 ∞ 1^{\infty}\, 1∞型、 ∞ ⋅ 0 \infty\cdot0\, ∞⋅0型、 ∞ − ∞ \infty-\infty\, ∞−∞型、 ∞ 0 \infty^0\, ∞0型、 0 0 0^0\, 00型.
不同的类型对应不同的求法,请读者逐一进行掌握.
注意未定式中出现的 0 \,0 0、 1 1\, 1和 ∞ \,\infty\, ∞都是趋向值. 七种类型中没有的 ∞ ∞ \,\infty^\infty\, ∞∞、 ∞ + ∞ \infty+\infty ∞+∞、 0 ∞ \,0^\infty\, 0∞都是定型式. ∞ ∞ = ∞ \,\infty^\infty=\infty ∞∞=∞, ∞ + ∞ = ∞ \infty+\infty=\infty ∞+∞=∞, 0 ∞ = ( 1 ∞ ) ∞ = 1 ∞ ∞ = 1 ∞ = 0 0^\infty=(\frac{1}{\infty})^\infty=\frac{1}{\infty^\infty}=\frac{1}{\infty}=0 0∞=(∞1)∞=∞∞1=∞1=0.
(一) 0 0 \frac{0}{0}\, 00型
利用等价无穷小、洛必达法则或泰勒展开求解.
三个必须形成条件反射的转换:
( 1 ) (1) (1) u ( x ) v ( x ) ⇒ e v ( x ) ln u ( x ) u(x)^{v(x)} \Rightarrow e^{v(x){\ln{u(x)}}} u(x)v(x)⇒ev(x)lnu(x);
( 2 ) (2) (2) ln ( . . . ) ⇒ ln ( 1 + Δ ) ∼ Δ ( → 0 ) \ln(...) \Rightarrow \ln(1+\Delta)\sim \Delta\;( \rightarrow 0) ln(...)⇒ln(1+Δ)∼Δ(→0);
( 3 ) (3) (3) ( . . . ) − 1 ⇒ { e Δ − 1 ∼ Δ , ( Δ → 0 ) ( 1 + Δ ) a ∼ a Δ , ( Δ → 0 , a 为常数 ) . (...) - 1 \Rightarrow \begin{cases} e^{\Delta}-1 \sim \Delta\;,& (\Delta \rightarrow 0)\\ (1+\Delta)^a \sim a\Delta\;,& (\Delta \rightarrow 0,a\text{为常数}).\\ \end{cases} (...)−1⇒{eΔ−1∼Δ,(1+Δ)a∼aΔ,(Δ→0)(Δ→0,a为常数).
注意:未定式 0 0 \,\frac{0}{0}\, 00是指分子分母都趋于 0 \,0 0,此时极限可能存在. 但如果确定分母等于 0 \,0\, 0(或分母在极限趋近于 0 \,0\, 0的过程中等于 0 \,0 0),会使得分式无意义,极限一定不存在. 请读者注意两种情况的差异!即趋于 0 \,0\, 0与真 0 \,0\, 0之间的差异.
为更深入理解这种差异,读者可以尝试分析以下等价无穷小的错误原因:
x → 0 , sin ( x 2 sin 1 x ) ∼ x 2 sin 1 x × x\to 0,\text{sin}(x^2\text{sin}\frac{1}{x})\sim x^2\text{sin}\frac{1}{x}\;{\color{Red}\times} x→0,sin(x2sinx1)∼x2sinx1×
(二) ∞ ∞ \frac{\infty}{\infty}\, ∞∞型
三种基本思路:
(
1
)
(1)
(1) 分子分母都是多项式:
lim
x
→
+
∞
b
n
x
n
+
b
n
−
1
x
n
−
1
.
.
.
+
b
0
a
m
x
m
+
a
m
−
1
x
m
−
1
.
.
.
+
a
0
=
{
0
,
n
<
m
,
b
n
a
m
,
n
=
m
,
∞
,
n
>
m
.
\lim\limits_{x \to +\infty}{\frac{b_nx^n+b_{n-1}x^{n-1}...+b_0}{a_mx^m+a_{m-1}x^{m-1}...+a_0}}= \begin{cases} 0,& {n < m,}\\ \frac{b_n}{a_m},& n = m,\\ \infty,& n > m.\\ \end{cases}
x→+∞limamxm+am−1xm−1...+a0bnxn+bn−1xn−1...+b0=⎩⎪⎨⎪⎧0,ambn,∞,n<m,n=m,n>m.
( 2 ) (2) (2) 通过倒代换转换为 0 0 \frac{0}{0} 00型.
倒代换即令 t = 1 x \,t=\frac{1}{x} t=x1,这就使得当 x → ∞ \,x\to\infty\, x→∞时, t → 0 \,t\to0 t→0. 倒代换在高等数学中使用非常基础和广泛的手法,读者一定要熟悉!
( 3 ) (3) (3) 洛必达法则.
(三) ∞ ⋅ 0 \infty\cdot0\, ∞⋅0型
思路:
(
1
)
(1)
(1) 对未定式中
∞
\,\infty\,
∞的部分进行倒代换,转化为
0
0
\frac{0}{0}
00型.
(
2
)
(2)
(2) 对未定式中
0
\,0\,
0的部分进行倒代换,转化为
∞
∞
\frac{\infty}{\infty}
∞∞型.
(四) 1 ∞ 1^{\infty}\, 1∞型
固定套路:
凑
(
1
+
Δ
)
1
Δ
(1+\Delta)^{\frac{1}{\Delta}}
(1+Δ)Δ1,由重要极限:
lim
Δ
→
0
(
1
+
Δ
)
1
Δ
=
e
\lim\limits_{\Delta \to 0}{(1+\Delta)^{\frac{1}{\Delta}}}=e
Δ→0lim(1+Δ)Δ1=e,得
lim Δ → 0 ( 1 + Δ 1 ) 1 Δ 2 = lim Δ → 0 ( 1 + Δ 1 ) 1 Δ 1 ⋅ Δ 1 Δ 2 = e lim Δ → 0 Δ 1 Δ 2 \lim\limits_{\Delta \to 0}{(1+\Delta_1)^{\frac{1}{\Delta_2}}}=\lim\limits_{\Delta \to 0}{(1+\Delta_1)^{\frac{1}{\Delta_1}\cdot\frac{\Delta_1}{\Delta_2}}}=e^{\lim\limits_{\Delta \to 0}{\frac{\Delta_1}{\Delta_2}}} Δ→0lim(1+Δ1)Δ21=Δ→0lim(1+Δ1)Δ11⋅Δ2Δ1=eΔ→0limΔ2Δ1
例: lim x → 0 ( 1 − 2 x 2 ) 1 x sin x = lim x → 0 { [ ( 1 + ( − 2 x 2 ) ] 1 ( − 2 x 2 ) } 1 x sin x ⋅ ( − 2 x 2 ) = e − lim x → 0 2 x sin x = e − 2 \lim\limits_{x \to 0}{(1-2x^2)^{\frac{1}{x\sin{x}}}}=\lim\limits_{x \to 0}{\{[(1 +(-2x^2)]^{\frac{1}{(-2x^2)}}}\}^{\frac{1}{x \sin{x}}·(-2x^2)}={e}^{-\lim\limits_{x \to 0}\frac{2x}{\sin{x}}}=e^{-2} x→0lim(1−2x2)xsinx1=x→0lim{[(1+(−2x2)](−2x2)1}xsinx1⋅(−2x2)=e−x→0limsinx2x=e−2 读者熟练以后可跳过中间步骤:
lim x → 0 ( 1 − 2 x 2 ) 1 x sin x = e lim x → 0 1 x sin x ⋅ ( − 2 x 2 ) = e − lim x → 0 2 x sin x = e − 2 \lim\limits_{x \to 0}{(1-2x^2)^{\frac{1}{x\sin{x}}}}=e^{\lim\limits_{x \to 0}{\frac{1}{x \sin{x}}·(-2x^2)}}={e}^{-\lim\limits_{x \to 0}\frac{2x}{\sin{x}}}=e^{-2} x→0lim(1−2x2)xsinx1=ex→0limxsinx1⋅(−2x2)=e−x→0limsinx2x=e−2
(五) ∞ − ∞ \infty-\infty\, ∞−∞型
思路:
通分使之成为分式,转化为
0
0
\,\frac{0}{0}\,
00型、
∞
∞
\frac{\infty}{\infty}\,
∞∞型之一.
无法直接通分,也要努力创造出分式 (通过倒代换等手段),比如下面这一典型类型:
ln
Δ
−
x
=
ln
Δ
−
ln
e
x
=
ln
Δ
e
x
\ln{\Delta}-x=\ln{\Delta}-\ln{e^x}=\ln\frac{\Delta}{e^x}
lnΔ−x=lnΔ−lnex=lnexΔ
例. 求下列极限:
lim x → + ∞ [ ln ( 1 + e x ) − x ] . \lim\limits_{x\to+\infty}[\text{ln}(1+e^x)-x]. x→+∞lim[ln(1+ex)−x].解:原式 = lim x → + ∞ [ ln ( 1 + e x ) − ln e x ] = lim x → + ∞ ln 1 + e x e x = 0 \,=\lim\limits_{x\to+\infty}[\text{ln}(1+e^x)-\text{ln}e^x]=\lim\limits_{x\to+\infty}\text{ln}\frac{1+e^x}{e^x}=0 =x→+∞lim[ln(1+ex)−lnex]=x→+∞limlnex1+ex=0
(六) ∞ 0 \infty^0\, ∞0型、 0 0 0^0\, 00型
思路:
利用
u
(
x
)
v
(
x
)
=
e
v
(
x
)
⋅
ln
u
(
x
)
\,u(x)^{v(x)} = e^{v(x)\cdot\ln{u(x)}}\,
u(x)v(x)=ev(x)⋅lnu(x)转化为其他类型求解.
(七) 泰勒展开 (麦克劳林公式)
泰勒展开求解不定型极限是通法. 本质上,等价无穷小和非零因子代入都是对泰勒展开的应用. 泰勒展开求解需要记忆常见的麦克劳林公式,计算过程略显繁琐. 当极限中出现 sin x 、 cos x 、 e x 、 ln ( 1 + x ) 、 ( 1 + x ) a \,\sin{x}、\cos{x}、e^x、\ln{(1+x)}、(1+x)^a\, sinx、cosx、ex、ln(1+x)、(1+x)a等堆叠不好处理,或分子分母精度(阶数)不一致时,可考虑使用泰勒展开求解.
常见麦克劳林公式:
e
x
=
1
+
x
+
x
2
2
!
+
.
.
.
+
x
n
n
!
+
o
(
x
n
)
e^x = 1+x+\frac{x^2}{2!}+...+\frac{x^n}{n!}+o(x^n)
ex=1+x+2!x2+...+n!xn+o(xn)
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
.
.
.
+
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
+
o
(
x
2
n
+
1
)
\sin{x} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - ... + (-1)^{n}\frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})
sinx=x−3!x3+5!x5−...+(−1)n(2n+1)!x2n+1+o(x2n+1)
cos
x
=
1
−
x
2
2
!
+
x
4
4
!
−
.
.
.
+
(
−
1
)
n
x
2
n
(
2
n
)
!
+
o
(
x
2
n
)
\cos{x} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - ... + (-1)^{n}\frac{x^{2n} }{(2n)!}+ o(x^{2n})
cosx=1−2!x2+4!x4−...+(−1)n(2n)!x2n+o(x2n)
ln
(
1
+
x
)
=
x
−
x
2
2
+
.
.
.
+
(
−
1
)
n
−
1
x
n
n
+
o
(
x
n
)
\ln(1+x) = x - \frac{x^2}{2} + ... + (-1)^{n-1} \frac{x^{n}}{n}+o(x^n)
ln(1+x)=x−2x2+...+(−1)n−1nxn+o(xn)
1
1
−
x
=
1
+
x
+
x
2
+
.
.
.
+
x
n
+
o
(
x
n
)
\frac{1}{1-x} = 1+x+x^2+...+x^n+o(x^n)
1−x1=1+x+x2+...+xn+o(xn)
1
1
+
x
=
1
−
x
+
x
2
−
.
.
.
+
(
−
1
)
n
x
n
+
o
(
x
n
)
\frac{1}{1+x} = 1-x+x^2-...+(-1)^{n}x^n+o(x^n)
1+x1=1−x+x2−...+(−1)nxn+o(xn)
(
1
+
x
)
a
=
1
+
a
x
+
a
(
a
−
1
)
2
!
x
2
+
a
(
a
−
1
)
(
a
−
2
)
3
!
x
3
+
.
.
.
(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3+...
(1+x)a=1+ax+2!a(a−1)x2+3!a(a−1)(a−2)x3+...
arctan
x
=
x
−
x
3
3
+
x
5
5
−
.
.
.
+
(
−
1
)
n
(
2
n
+
1
)
x
2
n
+
1
+
o
(
x
2
n
+
1
)
\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - ... + \frac{(-1)^{n}}{(2n+1)}x^{2n+1} + o(x^{2n+1})
arctanx=x−3x3+5x5−...+(2n+1)(−1)nx2n+1+o(x2n+1)
tan
x
=
x
+
x
3
3
+
o
(
x
3
)
\tan{x} = x+\frac{x^3}{3}+o(x^3)
tanx=x+3x3+o(x3)
arcsin
x
=
x
+
x
3
3
!
+
o
(
x
3
)
\arcsin{x} = x+\frac{x^3}{3!}+o(x^3)
arcsinx=x+3!x3+o(x3)
注意:
(1) 使用麦克劳林展开必须保证
x
→
0
\,x\to 0
x→0.
(2) 同样注意
sin
x
\,\text{sin}x
sinx、
tan
x
\text{tan}x
tanx、
arcsin
x
\text{arcsin}x
arcsinx、
arctan
x
\text{arctan}x\,
arctanx的麦克劳林公式容易混淆,记忆方法同等价无穷小.
sin \text{sin} sin、 arcsin \text{arcsin}\, arcsin的分母的分母是 3 ! \,3!\, 3!,而 tan \,\text{tan} tan、 arctan \text{arctan}\, arctan是 3 \,3 3. 正负号的记忆读者可以思考 y = x \,y=x\, y=x与三角函数图像之间的大小关系.
(3) ( 1 + x ) a (1+x)^a\, (1+x)a展开式中的系数看上去很复杂,其实就是二项式公式的组合数系数: C a 0 C^0_a Ca0、 C a 1 C^1_a Ca1、 C a 2 C^2_a Ca2…
解题方法:
泰勒展开的难点在于阶数的确定. 需保证分子分母经过展开以后同阶 (分子分母最低次幂同阶),再进行计算.
例:设 x \,x\, x是无穷大量,用麦克劳林公式展开 1 − x 6 3 \,\sqrt[3]{1-x^6}\, 31−x6得到等价无穷小:
1 − x 6 3 = ( 1 − x 6 ) 1 3 = − x 2 ( 1 − 1 x 6 ) 1 3 \sqrt[3]{1-x^6}=(1-x^6)^{\frac{1}{3}}=-x^2(1-\frac{1}{x^6})^{\frac{1}{3}} 31−x6=(1−x6)31=−x2(1−x61)31 参照公式: ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + . . . (1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3+... (1+x)a=1+ax+2!a(a−1)x2+3!a(a−1)(a−2)x3+... 1 − x 6 3 ~ − x 2 ⋅ ( 1 − 1 3 x 6 + o ( x − 6 ) ) \sqrt[3]{1-x^6}~-x^2\cdot(1-\frac{1}{3x^6}+o(x^{-6})) 31−x6~−x2⋅(1−3x61+o(x−6))
(八) 非零因子代入
当发现欲求极限的函数中存在某个因子,将极限趋近的值代入该因子,因子不为零. 那么就可以直接代入计算. 如:
lim
x
→
0
sin
x
−
x
cos
x
x
3
cos
x
=
lim
x
→
0
sin
x
−
x
cos
x
x
3
\lim\limits_{x \to 0}\frac{\text{sin}x-x\text{cos}x}{x^3\color{Red}\text{cos}x}=\lim\limits_{x \to 0}\frac{\text{sin}x-x\text{cos}x}{x^3\color{Red}}
x→0limx3cosxsinx−xcosx=x→0limx3sinx−xcosx
条件:
(1) 必须是一个完整的因子 (不是多项式的一部分、不是幂指函数的一部分);
(2) 因子代入后不等于
0
\,0\,
0.
本质:
非零因子代入和等价无穷小本质上都是泰勒展开求极限的重要运用. 不同的是,等价无穷小要求因子代入后等于
0
\,0
0,而非零因子代入要求因子代入后不等于
0
\,0
0.
重要技巧:
非零因子应优先使用,能代入计算就先代入计算!
9 求解不定型极限的重要技巧
提取因子
提取出的因子可使用等价无穷小或非零因子代入等方法求出. 下面列举几个类型:
型 A A A: tan x − sin x ⇒ tan x ( 1 − cos x ) \tan{x}-\sin{x} \Rightarrow \tan{x}\,(1-\cos{x}) tanx−sinx⇒tanx(1−cosx),
型 B B B: e Δ − e x ⇒ e x ( e Δ − x − 1 ) e^{\Delta}-e^{x} \Rightarrow e^x( e^{\Delta-x} - 1) eΔ−ex⇒ex(eΔ−x−1)
以后见多项式中出现 e Δ \,e^\Delta eΔ,要条件反射般地考虑提取因子.
型 C C C: x x − Δ x ⇒ x x ( 1 − ( Δ x ) x ) x^{x}-\Delta^{x} \Rightarrow x^x(1-(\frac{\Delta}{x})^x) xx−Δx⇒xx(1−(xΔ)x)
型 D D D: x n + Δ n ⇒ x n ( 1 + Δ x n ) n \sqrt[n]{x^n+\Delta}\Rightarrow \sqrt[n]{x^n(1+\frac{\Delta}{x^n})} nxn+Δ⇒nxn(1+xnΔ)
分子分母有理化
? ± ? \sqrt{?}\pm \sqrt{?} ?±? o r \,or\, or ? ± ? \sqrt{?}\,\pm \,? ?±? o r \,or\, or ? ± ? ?\pm \sqrt{?} ?±? ⇒ \Rightarrow ⇒ 分子或分母有理化,之后通常可以通过非零因子代入先计算一部分.
抓大放小
当
x
→
∞
\,x \to \infty\,
x→∞时,起决定性作用的是多项式中最高阶的无穷大量. 如:
lim
x
→
+
∞
3
x
x
+
2
x
+
x
−
x
=
3
2
.
\lim_{x \to +\infty}{\frac{ 3\sqrt{x}}{\sqrt{x+2\sqrt{x}}+\sqrt{x-\sqrt{x}}}}=\frac{3}{2}.
x→+∞limx+2x+x−x3x=23.
注意:
(1) 在
ln
\,\ln\,
ln括号里面的多项式不能直接抓大放小,而要想办法提出一个因子拆开后再考虑.
例如:
lim x → + ∞ ln ( x 2 + x + 1 ) ln ( x 10 + 2 x 2 − 1 ) = lim x → + ∞ ln x 2 ( 1 + 1 x ) ln x 4 ( 1 + 3 x 2 + 1 x 4 ) = lim x → + ∞ 2 ln x + ln ( 1 + 1 x ) 4 ln x + ln ( 1 + 3 x 2 + 1 x 4 ) = 1 2 \lim\limits_{x \to +\infty}{\frac{\ln(x^2+x+1)}{\ln(x^{10}+2x^2-1)}}=\lim\limits_{x \to +\infty}{\frac{\ln{x^2(1+\frac{1}{x})}}{\ln{x^4}{(1+\frac{3}{x^2}+\frac{1}{x^4})}}}=\lim\limits_{x \to +\infty}{\frac{2\ln{x}+{\ln{(1+\frac{1}{x}})}}{4\ln{x}+{\ln(1+\frac{3}{x^2}+\frac{1}{x^4})}}}=\frac{1}{2} x→+∞limln(x10+2x2−1)ln(x2+x+1)=x→+∞limlnx4(1+x23+x41)lnx2(1+x1)=x→+∞lim4lnx+ln(1+x23+x41)2lnx+ln(1+x1)=21
(2) 尤其小心 x → − ∞ \,x\to-\infty\, x→−∞或出现根号时,抓大放小各部分的符号.
负数换元:在抓大放小时, x → − ∞ x\to-\infty\, x→−∞需要额外注意符号,容易出错. 可按照以下方法进行负数换元:
令 x = − t \,x=-t x=−t,则当 x → − ∞ \,x\to-\infty\, x→−∞时, t → + ∞ t\to+\infty t→+∞.
各种拆项法
型
A
A
A
−
−
- -
−− 减
1
\,1\,
1加
1
\,1
1
通常会产生两个
2
\,2\,
2阶无穷小,如:
lim
x
→
0
e
x
2
+
cos
x
−
2
x
arcsin
2
x
=
lim
x
→
0
e
x
2
−
1
+
cos
x
−
1
x
arcsin
2
x
.
\lim\limits_{x \to 0}{\frac{e^{x^2} +\,\cos{x}\,-\,2}{x\arcsin2x}}=\lim\limits_{x \to 0}{\frac{e^{x^2} -1+\,\cos{x}\,-\,1}{x\arcsin2x}}.
x→0limxarcsin2xex2+cosx−2=x→0limxarcsin2xex2−1+cosx−1.
型
B
B
B
−
−
- -
−− 减
x
\,x\,
x加
x
\,x
x (减其他无穷小)
通常会产生两个
3
\,3\,
3阶无穷小,如:
x
e
x
−
sin
x
⇒
(
x
e
x
−
x
)
+
(
x
−
sin
x
)
.
xe^x-\sin{x} \Rightarrow (xe^x-x)+(x-\sin{x}).
xex−sinx⇒(xex−x)+(x−sinx). 读者可再考虑下面这种连拆:
lim
x
→
0
tan
(
sin
x
)
−
sin
(
tan
x
)
x
3
=
lim
x
→
0
tan
(
sin
x
)
−
sin
x
x
3
+
lim
x
→
0
sin
x
−
tan
x
x
3
+
lim
x
→
0
tan
x
−
sin
(
tan
x
)
x
3
\lim\limits_{x \to 0}\frac{\tan(\sin{x})-\sin(\tan{x})}{x^3}=\lim\limits_{x \to 0}\frac{\tan{(\sin{x})-\sin{x}}}{x^3}+\lim\limits_{x \to 0}\frac{\sin{x}-\tan{x}}{x^3}+\lim\limits_{x \to 0}\frac{\tan{x}-\sin{(\tan{x})}}{x^3}
x→0limx3tan(sinx)−sin(tanx)=x→0limx3tan(sinx)−sinx+x→0limx3sinx−tanx+x→0limx3tanx−sin(tanx)
⋆
\color{Red}\star
⋆型
C
C
C
−
−
- -
−− 拆
1
−
cos
x
⋅
cos
2
x
.
.
.
1-\cos{x}·\cos{2x}...
1−cosx⋅cos2x...
比较特殊的拆法,需要记忆!如:
lim
x
→
0
1
−
cos
x
⋅
cos
2
x
⋅
cos
3
x
x
2
=
lim
x
→
0
1
−
cos
x
x
2
+
lim
x
→
0
cos
x
⋅
1
−
cos
2
x
x
2
+
lim
x
→
0
cos
x
⋅
cos
2
x
⋅
1
−
cos
3
x
x
2
\lim\limits_{x \to 0}{\frac{1-\cos{x}·\cos{2x}·\cos{3x}}{x^2}}=\lim\limits_{x \to 0}{\frac{1-\cos{x}}{x^2}}+\lim\limits_{x \to 0}{\cos{x} ·\frac{1-\cos{2x}}{x^2}}+\lim\limits_{x \to 0}{\cos{x}·\cos{2x}·\frac{1-\cos{3x}}{x^2}}
x→0limx21−cosx⋅cos2x⋅cos3x=x→0limx21−cosx+x→0limcosx⋅x21−cos2x+x→0limcosx⋅cos2x⋅x21−cos3x
型
D
D
D
−
−
- -
−− 拆
ln
\,\ln
ln,
ln
(
a
⋅
b
)
=
ln
a
+
ln
b
\ln{(a\cdot b)} = \ln{a} + \ln{b}
ln(a⋅b)=lna+lnb,
很容易被忽视的拆法,不一定都用
ln
(
1
+
Δ
)
~
Δ
\,\ln(1+\Delta)~\Delta\,
ln(1+Δ)~Δ处理.
型 E E E − − - - −− 因式分解,拆开分母根据阶数分配.
比如平方差公式: a 2 − b 2 = ( a − b ) ⋅ ( a + b ) a^{2}-b^{2} = (a-b)\cdot(a+b) a2−b2=(a−b)⋅(a+b)
加减运算
如果多项式的一部分可以直接求出,可大胆地拆出!即:
对于极限
lim
(
f
±
g
)
\,\lim(f \pm g)
lim(f±g),若
lim
f
\,\lim f\,
limf存在(或
lim
g
\,\lim g\,
limg存在),则必有:
lim
(
f
±
g
)
=
lim
f
±
lim
g
\lim(f \pm g)=\lim f\pm \lim g
lim(f±g)=limf±limg
如:
lim x → 0 [ ( x + 1 ) arctan x − π 2 x ] = π 2 + lim x → 0 [ x ( arctan x − π 2 ) ] = π 2 \lim\limits_{x \to 0}{[(x+1)\arctan{x}-\frac{\pi}{2}x]}=\frac{\pi}{2}+\lim\limits_{x \to 0}{[x(\arctan{x}-\frac{\pi}{2})]}=\frac{\pi}{2} x→0lim[(x+1)arctanx−2πx]=2π+x→0lim[x(arctanx−2π)]=2π
拆开计算的结果可能是极限不存在. 若 lim f \,\lim f limf、 lim g \,\lim g\, limg都存在,则极限为二者相加结果. 若 lim f \,\lim f limf、 lim g \,\lim g\, limg之一不存在,则极限不存在.
代换 (换元法)
代换是非常重要的手法,常见有 x − 1 \,x-1\, x−1代换、倒代换、负数代换、三角函数代换等. 灵活使用代换可以让式子变得清晰,利于计算。
如:
lim x → 0 sin ( sin x ) − sin x x 3 = lim t → 0 sin t − t t 3 = lim t → 0 cos t − 1 3 t 2 = − 1 6 \lim\limits_{x \to 0}{\frac{\sin({\sin{x}})-\sin{x}}{x^3}}=\lim\limits_{t \to 0}{\frac{\sin{t}-t}{t^3}}=\lim\limits_{t \to 0}{\frac{\cos{t}-1}{3t^2}}=-\frac{1}{6} x→0limx3sin(sinx)−sinx=t→0limt3sint−t=t→0lim3t2cost−1=−61
尤其还要熟悉带三角函数的代换手法,如:
lim x → 1 ( x − 1 ) ⋅ tan π 2 x = lim x → 1 ( x − 1 ) ⋅ tan [ π 2 ( x − 1 ) + π 2 ] = − lim x → 0 t ⋅ cot π 2 t = − 2 π . \lim\limits_{x \to 1} (x-1)\cdot\tan{\frac{\pi}{2}}x=\lim\limits_{x \to 1} (x-1)\cdot\tan[{\frac{\pi}{2}}(x-1)+\frac{\pi}{2}]=-\lim\limits_{x \to 0}{t\cdot \cot{\frac{\pi}{2}t}}=-\frac{2}{\pi}. x→1lim(x−1)⋅tan2πx=x→1lim(x−1)⋅tan[2π(x−1)+2π]=−x→0limt⋅cot2πt=−π2.
除 x \,x\, x除 1 x \,\frac{1}{x}\, x1
题目特征:
多见于
sin
Δ
⋅
ln
Δ
\,\sin{\Delta} \cdot \ln\Delta\,
sinΔ⋅lnΔ.
如:
lim x → 0 + x sin x = e lim x → 0 + sin x ⋅ ln x = e lim x → 0 + sin x x ⋅ ln x 1 x = e lim x → 0 + x ⋅ ln x = 1 \lim\limits_{x \to 0^{+}}{x^{\sin{x}}}=e^{\lim\limits_{x \to 0^{+}}{\sin{x}·\ln{x}}}=e^{\lim\limits_{x \to 0^{+}}{\frac{\sin{x}}{x}·\frac{\ln{x}}{\frac{1}{x}}}}=e^{\lim\limits_{x \to 0^{+}}{x·\ln{x}}}=1 x→0+limxsinx=ex→0+limsinx⋅lnx=ex→0+limxsinx⋅x1lnx=ex→0+limx⋅lnx=1
当然,也可以根据需要除以其他 x \,x\, x的等价无穷小 (比如除 tan x \,\tan x tanx).
减少绝对值
分子分母同时绝对值,求极限将无从下手. 可通过提取因子或同除等方法减少绝对值.
如:
lim x → 0 ∫ 0 2 x ∣ t − x ∣ sin t d t ∣ x ∣ 3 = lim x → 0 ∫ 0 2 x ∣ t x − 1 ∣ sin t d t x 2 \lim\limits_{x \to 0}\frac{\int_0^{2x}|t-x|\sin{t}dt}{|x|^3}=\lim\limits_{x \to 0}\frac{\int_0^{2x}|\frac{t}{x}-1|\sin{t}dt}{x^2} x→0lim∣x∣3∫02x∣t−x∣sintdt=x→0limx2∫02x∣xt−1∣sintdt
有界函数 ∗ * ∗ 无穷小还是无穷小
容易忽视,可能会在比较复杂的式子里塞一项.
与导数、变积分限函数结合
对于导数,有的题目直接把导数作为已知条件,如:已知 f ′ ( 0 ) = 2 \,f'(0)=2 f′(0)=2;有的题目则是根据导数定义给出的条件,如:已知 lim x → 0 f ( x ) x = 2 \,\lim\limits_{x \to 0}{\frac{f(x)}{x}=2} x→0limxf(x)=2. 导数相关内容见:一元微分学.
对于变积分限函数,要注意先清理掉被积函数中的多余变量,再使用洛必达法则. 变积分限函数相关内容见:不定积分与定积分.
中值定理与牛顿莱布尼茨公式( N . − L . N.-L. N.−L.)
题目特征:
在求极限这一块比较常见的是使用拉格朗日中值定理 (
L
\text{L}
L).
若极限的一部分形式明显是
f
(
x
+
a
)
−
f
(
x
)
\,f(x+a)-f(x)
f(x+a)−f(x),如:
lim
x
→
0
x
2
(
2
1
x
−
2
1
x
+
1
)
\lim\limits_{x \to 0}{x^2}(2^{\frac{1}{x}}-2^\frac{1}{x+1})
x→0limx2(2x1−2x+11) 发现
2
1
x
−
2
1
x
+
1
\,2^{\frac{1}{x}}-2^\frac{1}{x+1}\,
2x1−2x+11难以通过其他求极限方法处理,但其形式明显是
f
(
x
+
a
)
−
f
(
x
)
\,f(x+a)-f(x)\,
f(x+a)−f(x)(多一个负号),这种情况应优先考虑
L
\,\text{L}
L.
还可能结合 N . − L . N.-L. N.−L.: f ( x ) − f ( a ) = ∫ a x f ′ ( t ) d t f(x)-f(a)=\int_a^xf'(t)\text{d}t f(x)−f(a)=∫axf′(t)dt
关于 N . − L . \,N.-L.\, N.−L.和其他中值定理相关内容,见:中值定理.
三角函数周期性
特征:题目是带三角函数的数列极限,且三角函数中含 π \,\pi π.
思路:考虑使用周期性,以
sin
Δ
\,\text{sin}\Delta\,
sinΔ为例:
(1) 从
Δ
\,\Delta\,
Δ中拆出
2
n
π
\,2n\pi
2nπ;
(2) 在
Δ
\,\Delta\,
Δ内部加或减
2
n
π
\,2n\pi
2nπ.
如:求极限: lim n → ∞ n sin 4 n 2 + 1 π \lim\limits_{n\to\infty}n\,\text{sin}\sqrt{4n^2+1}\pi n→∞limnsin4n2+1π.
考虑在内部减一个周期:
lim n → ∞ n sin 4 n 2 + 1 π = lim n → ∞ n sin ( 4 n 2 + 1 − 2 n ) π \lim\limits_{n\to\infty}n\,\text{sin}\sqrt{4n^2+1}\pi=\lim\limits_{n\to\infty}n\,\text{sin}(\sqrt{4n^2+1}-2n)\pi n→∞limnsin4n2+1π=n→∞limnsin(4n2+1−2n)π下面就可以用分子有理化继续往下做了.
已知极限求另一个极限
特征:
设
f
(
x
)
\,f(x)\,
f(x)连续,且
lim
x
→
0
tan
2
x
+
x
f
(
x
)
x
3
=
2
3
\,\lim\limits_{x\to0}\frac{\text{tan}2x+xf(x)}{x^3}=\frac{2}{3}
x→0limx3tan2x+xf(x)=32,则
lim
x
→
0
2
+
f
(
x
)
x
2
=
?
\,\lim\limits_{x\to0}\frac{2+f(x)}{x^2}=?\,
x→0limx22+f(x)=?
解题方法:
(1) 通过等价无穷小、拆项法、泰勒展开,用已知极限凑出待求极限.
(2) 先解出
f
(
x
)
\,f(x)\,
f(x)的表达式,再代入求解.
方法(2)的原理:
若 lim x → ⋅ f ( x ) = A \,\lim\limits_{x\to\cdot}f(x)=A x→⋅limf(x)=A, A A\, A是一个常数,那么 f ( x ) = A + α \,f(x)=A+\alpha f(x)=A+α,其中 lim x → ⋅ α = 0 \,\lim\limits_{x\to\cdot}\alpha=0 x→⋅limα=0.
两种方法通常都可以使用. 方法(2)的思想还多运用于多元微分学. 下面演示一下方法(2)的解题过程:
例. 若 lim x → 0 sin 6 x + x f ( x ) x 3 = 0 \,\lim\limits_{x\to 0}\frac{\text{sin}6x+xf(x)}{x^3}=0 x→0limx3sin6x+xf(x)=0,则 6 + f ( x ) x 2 = ? \,\frac{6+f(x)}{x^2}=? x26+f(x)=?
解:由 lim x → 0 sin 6 x + x f ( x ) x 3 = 0 \,\lim\limits_{x\to 0}\frac{\text{sin}6x+xf(x)}{x^3}=0 x→0limx3sin6x+xf(x)=0,
sin 6 x + x f ( x ) x 3 = 0 + α ( lim x → 0 α = 0 ) \frac{\text{sin}6x+xf(x)}{x^3}=0+\alpha\;\;(\lim\limits_{x\to 0}\alpha=0) x3sin6x+xf(x)=0+α(x→0limα=0) ⇒ f ( x ) = − sin 6 x x + o ( x 3 ) x = − sin 6 x x + o ( x 2 ) \Rightarrow f(x)=-\frac{\text{sin}6x}{x}+\frac{o(x^3)}{x}=-\frac{\text{sin}6x}{x}+o(x^2) ⇒f(x)=−xsin6x+xo(x3)=−xsin6x+o(x2) 注意这里用到了无穷小的运算规则: o ( x m ) x n = o ( x m − n ) ( m ⩾ n ) \frac{o(x^m)}{x^n}=o(x^{m-n})\;\;\;({\color{Red}m\geqslant n}) xno(xm)=o(xm−n)(m⩾n)
因此, lim x → 0 6 + f ( x ) x 2 = 36 \,\lim\limits_{x\to 0}\frac{6+f(x)}{x^2}=36 x→0limx26+f(x)=36.
arctan x + arctan 1 x \text{arctan}x+\text{arctan}\frac{1}{x} arctanx+arctanx1
请一定记住以下函数: arctan x + arctan 1 x = { π 2 , x > 0 , − π 2 , x < 0. \text{arctan}x+\text{arctan}\frac{1}{x}=\begin{cases}\frac{\pi}{2},x>0,\\-\frac{\pi}{2},x<0.\end{cases} arctanx+arctanx1={2π,x>0,−2π,x<0.
特点:(1) 是一个奇函数. (2) 可以理解为 π 2 \,\frac{\pi}{2}\, 2π倍的符号函数. (3) 定义域为 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) \,(-\infty,0)\cup(0,+\infty) (−∞,0)∪(0,+∞).
该函数有时可以很巧妙地运用在极限求解中:
例. 求以下极限:
lim x → + ∞ ( 2 π ⋅ arctan x 2 ) x \lim\limits_{x\to+\infty}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})^x x→+∞lim(π2⋅arctan2x)x 解: lim x → + ∞ ( 2 π ⋅ arctan x 2 ) x = e lim x → + ∞ x ⋅ ln ( 2 π ⋅ arctan x 2 ) \lim\limits_{x\to+\infty}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})^x=e^{\lim\limits_{x\to+\infty}x\cdot\text{ln}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})} x→+∞lim(π2⋅arctan2x)x=ex→+∞limx⋅ln(π2⋅arctan2x),其中:
lim x → + ∞ x ln ( 2 π ⋅ arctan x 2 ) = lim x → + ∞ x ( 2 π ⋅ arctan x 2 − 1 ) = 2 π lim x → + ∞ x ( arctan x 2 − π 2 ) \lim\limits_{x\to+\infty}x\text{ln}(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2})=\lim\limits_{x\to+\infty}x(\frac{2}{\pi}\cdot\text{arctan}\frac{x}{2}-1)=\frac{2}{\pi}\lim\limits_{x\to+\infty}x({\color{Red}\text{arctan}\frac{x}{2}}-\frac{\pi}{2}) x→+∞limxln(π2⋅arctan2x)=x→+∞limx(π2⋅arctan2x−1)=π2x→+∞limx(arctan2x−2π) = 2 π lim x → + ∞ x ( π 2 − arctan 2 x − π 2 ) = 2 π lim x → + ∞ x ( − arctan 2 x ) = − 2 π lim x → + ∞ x ⋅ 2 x = − 4 π =\frac{2}{\pi}\lim\limits_{x\to+\infty}x({\color{Red}\frac{\pi}{2}-\text{arctan}\frac{2}{x}}-\frac{\pi}{2})=\frac{2}{\pi}\lim\limits_{x\to+\infty}x(-\text{arctan}\frac{2}{x})=-\frac{2}{\pi}\lim\limits_{x\to+\infty}x\cdot\frac{2}{x}=-\frac{4}{\pi} =π2x→+∞limx(2π−arctanx2−2π)=π2x→+∞limx(−arctanx2)=−π2x→+∞limx⋅x2=−π4 因此,原极限为 e − 4 π \,e^{-\frac{4}{\pi}} e−π4.
10 左右极限问题
特征:函数在某一点极限存在的充要条件是左右极限同时存在. 在函数中含有根号、取整函数等时,可能使得左右极限不同或不存在,导致极限不存在. 具体来说,当待求极限出现以下特征时,一定要考虑左右极限是否相同:
(1)
∣
x
∣
,
x
→
0
|x|,x\to0
∣x∣,x→0.
(2)
x
,
x
→
∞
\sqrt{x},x\to\infty
x,x→∞.
(3)
e
x
,
x
→
∞
e^x,x\to\infty
ex,x→∞;
e
1
x
,
x
→
0
e^\frac{1}{x},x\to0
ex1,x→0.
(4)
arctan
x
,
x
→
∞
\text{arctan}x,x\to\infty
arctanx,x→∞;
arctan
1
x
,
x
→
0
\text{arctan}\frac{1}{x},x\to0
arctanx1,x→0.
(5)
[
x
]
[x]
[x],
x
→
n
x\to n
x→n.
(6) 分段函数的分段点处.
读者可以尝试分析这个极限,极具迷惑性: lim x → 0 ( 1 + 1 x ) x \lim\limits_{x\to 0}\big(1+\frac{1}{x}\big)^x x→0lim(1+x1)x
分析:
当 x → 0 + \,x\to0^+\, x→0+时,
lim x → 0 + ( 1 + 1 x ) x = e lim x → 0 + x ln ( 1 + 1 x ) = e lim x → 0 + 1 1 + x = 1 \lim\limits_{x\to 0^+}\big(1+\frac{1}{x}\big)^x=e^{\lim\limits_{x\to 0^{+}}x\text{ln}(1+\frac{1}{x})}=e^{\lim\limits_{x\to 0^{+}}\frac{1}{1+x}}=1 x→0+lim(1+x1)x=ex→0+limxln(1+x1)=ex→0+lim1+x1=1当 x → 0 − \,x\to0^-\, x→0−时, 1 + 1 x → − ∞ 1+\frac{1}{x}\to-\infty 1+x1→−∞,极限不存在. 这是因为负数的负分数次方,在实数范围内存在无数个无意义点 (因为对负数开偶次方根). 比如 x = − 1 4 \,x=-\frac{1}{4}\, x=−41时, ( 1 + 1 x ) x = 1 − 3 4 (1+\frac{1}{x})^x=\frac{1}{\sqrt[4]{-3}} (1+x1)x=4−31,无意义. 由于极限存在需保证在该点的某一去心邻域内函数有定义,而在此情形下,函数任意去心邻域的左侧都存在无意义点,因此原极限不存在.
11 求参数问题的思路
(一) 等价无穷小求参数问题 (比较无穷小的关系)
常见解题方法:
(
1
)
(1)\,
(1)直接利用等价无穷小求解:
例. 当 x → 0 \,x \to 0\, x→0时, ln cos a x ∼ − 2 x b ( a > 0 ) \ln{\cos{ax}} \sim -2x^b\,(a >0) lncosax∼−2xb(a>0),求 a \,a a、 b b b.
解:由 x → 0 \,x \to 0\, x→0时, ln cos a x ∼ cos a x − 1 ∼ − 1 2 a 2 x 2 \ln{\cos{ax}} \sim \cos{ax - 1} \sim -\frac{1}{2}a^2x^2 lncosax∼cosax−1∼−21a2x2, − 1 2 a 2 x 2 ∼ − 2 x b -\frac{1}{2}a^2x^2 \sim -2x^b −21a2x2∼−2xb,得 a = b = 2 \,a = b=2 a=b=2.
例. 当 x → 0 \,x \to 0\, x→0时, ( 1 + x sin x ) a − 1 ∼ 1 − cos x (1+x \sin{x})^a - 1 \sim 1 - \cos{x} (1+xsinx)a−1∼1−cosx,求 a \,a\, a的值.
解:由 x → 0 \,x \to 0\, x→0时, ( 1 + x sin x ) a − 1 ∼ 2 a x 2 (1+x \sin{x})^a - 1 \sim 2ax^2 (1+xsinx)a−1∼2ax2, 1 − cos x ∼ 1 2 x 2 1 - \cos{x} \sim \frac{1}{2}x^2 1−cosx∼21x2,得 2 a = 1 2 \,2a=\frac{1}{2} 2a=21, a = 1 4 a=\frac{1}{4} a=41.
( 2 ) (2)\, (2)如果题目含有变积分限函数,可在草稿纸上通过对其求导确定阶数:
例. 当 x → 0 \,x \to 0\, x→0时, f ( x ) = ∫ 0 x 2 ln ( 1 + t ) d t ∼ g ( x ) = x a ( e b x − 1 ) f(x)=\int^{x^2}_{0}{\ln{(1+t)}dt} \sim g(x)=x^a(e^{bx}-1) f(x)=∫0x2ln(1+t)dt∼g(x)=xa(ebx−1),求 a 、 b \,a、b\, a、b的值.
分析: f ′ ( x ) = [ ∫ 0 x 2 ln ( 1 + t ) d t ] ′ = 2 x ⋅ ln ( 1 + x 2 ) ∼ 2 x 3 f'(x)=[\int_{0}^{x^2}{\ln{(1+t)}dt}]'=2x\cdot\ln{(1+x^2)} \sim 2x^3 f′(x)=[∫0x2ln(1+t)dt]′=2x⋅ln(1+x2)∼2x3,说明 f ( x ) ∼ x 4 2 f(x) \sim \frac{x^4}{2} f(x)∼2x4.
解:由 lim x → 0 ∫ 0 x 2 ln ( 1 + t ) d t x 4 = lim x → 0 2 x ⋅ ln ( 1 + x 2 ) 4 x 3 = 1 2 \lim\limits_{x \to 0}{\frac{\int_{0}^{x^2}{\ln{(1+t)}dt}}{x^4}}=\lim\limits_{x \to 0}{\frac{2x\cdot\ln{(1+x^2)}}{4x^3}}=\frac{1}{2} x→0limx4∫0x2ln(1+t)dt=x→0lim4x32x⋅ln(1+x2)=21, f ( x ) ∼ x 4 2 f(x) \sim \frac{x^4}{2} f(x)∼2x4,
再由 g ( x ) = x a ( e b x − 1 ) ∼ b x a + 1 g(x) = x^a(e^{bx}-1) \sim bx^{a+1} g(x)=xa(ebx−1)∼bxa+1,得 a = 3 , b = 1 2 \,a=3,b=\frac{1}{2} a=3,b=21.
如果题目中还涉及抽象函数,无法直接使用等价无穷小,可以通过假设阶数的方法判断阶数:
假设
g
(
x
)
\,g(x)\,
g(x)阶数为
n
\,n\,
n,则通过已知条件和
lim
x
→
0
g
(
x
)
x
n
\,\lim\limits_{x \to 0}\frac{g(x)}{x^n}\,
x→0limxng(x)可以解出
n
\,n\,
n.
例. f ( x ) f(x)\, f(x)二阶连续可导, lim x → 0 f ( x ) x 2 = − 2 \lim\limits_{x \to 0}{\frac{f(x)}{x^2}}=-2\, x→0limx2f(x)=−2. ∫ 0 t 2 t f ( x 2 − t ) d t ∼ a x b ( x → 0 ) \int_0^{t^2}tf(x^2-t)dt \sim ax^b (x \to 0) ∫0t2tf(x2−t)dt∼axb(x→0),求 a \,a a, b b b.
解: 1 o 1^o\, 1o lim x → 0 f ( x ) x 2 = − 2 ⇒ f ( 0 ) = 0 \lim\limits_{x \to 0}{\frac{f(x)}{x^2}}=-2\, \Rightarrow f(0)=0 x→0limx2f(x)=−2⇒f(0)=0;
lim x → 0 f ′ ( x ) 2 x = − 2 \lim\limits_{x \to 0}{\frac{f'(x)}{2x}}=-2\, x→0lim2xf′(x)=−2(洛必达) ⇒ f ′ ( 0 ) = 0 \Rightarrow f'(0)=0 ⇒f′(0)=0;
lim x → 0 f ′ ′ ( x ) 2 = − 2 \lim\limits_{x \to 0}{\frac{f''(x)}{2}}=-2\, x→0lim2f′′(x)=−2(洛必达) ⇒ f ′ ′ ( 0 ) = − 4 \Rightarrow f''(0)=-4 ⇒f′′(0)=−4;
2 o 2^o\, 2o ∫ 0 t 2 t f ( x 2 − t ) d t = x 2 − t = u x 2 ∫ 0 x 2 f ( u ) d u − ∫ 0 x 2 u f ( u ) d u \int_0^{t^2}tf(x^2-t)dt \xlongequal{x^2-t=u}x^2\int_{0}^{x^2}f(u)du-\int_{0}^{x^2}uf(u)du ∫0t2tf(x2−t)dtx2−t=ux2∫0x2f(u)du−∫0x2uf(u)du;
3 o 3^o\, 3o 假设 ∫ 0 t 2 t f ( x 2 − t ) d t \,\int_0^{t^2}tf(x^2-t)dt\, ∫0t2tf(x2−t)dt阶数为 n \,n\, n,
lim x → 0 x 2 ∫ 0 x 2 f ( u ) d u − ∫ 0 x 2 u f ( u ) d u x n \lim\limits_{x \to 0}{\frac{x^2\int_0^{x^2}{f(u)du}-\int_0^{x^2}uf(u)du}{x^n}} x→0limxnx2∫0x2f(u)du−∫0x2uf(u)du
= lim x → 0 2 x ∫ 0 x 2 f ( u ) d u n x n − 1 =\lim\limits_{x \to 0}{\frac{2x\int_0^{x^2}{f(u)du}}{nx^{n-1}}} =x→0limnxn−12x∫0x2f(u)du;
= 2 n lim x → 0 ∫ 0 x 2 f ( u ) d u x n − 2 =\frac{2}{n}\lim\limits_{x \to 0}{\frac{\int_0^{x^2}{f(u)du}}{x^{n-2}}} =n2x→0limxn−2∫0x2f(u)du;
= 2 n lim x → 0 2 x f ( x 2 ) ( n − 2 ) x n − 3 =\frac{2}{n}\lim\limits_{x \to 0}{\frac{2xf(x^2)}{(n-2)x^{n-3}}} =n2x→0lim(n−2)xn−32xf(x2);
= 4 n ( n − 2 ) lim x → 0 f ( x 2 ) x n − 4 =\frac{4}{n(n-2)}\lim\limits_{x \to 0}{\frac{f(x^2)}{x^{n-4}}} =n(n−2)4x→0limxn−4f(x2);
由 lim x → 0 f ( x ) x 2 = − 2 \,\lim\limits_{x \to 0}{\frac{f(x)}{x^2}}=-2\, x→0limx2f(x)=−2,当 n − 4 = 4 \,n-4=4\, n−4=4,即 n = 8 \,n=8\, n=8时,
lim x → 0 f ( x 2 ) x n − 4 = − 2 \lim\limits_{x \to 0}{\frac{f(x^2)}{x^{n-4}}}=-2 x→0limxn−4f(x2)=−2, ∫ 0 t 2 t f ( x 2 − t ) d t ∼ 4 8 ( 8 − 2 ) × ( − 2 ) x 8 = − 1 6 x 8 \int_0^{t^2}tf(x^2-t)dt \sim \frac{4}{8(8-2)}\times (-2)x^8=-\frac{1}{6}x^8 ∫0t2tf(x2−t)dt∼8(8−2)4×(−2)x8=−61x8.
得 a = − 1 6 \,a=-\frac{1}{6} a=−61, b = 8 b=8 b=8。
( 3 ) (3)\, (3) 不能直接使用等价无穷小,考虑泰勒展开:
例. 当 x → 0 \,x \to 0\, x→0时, f ( x ) = ∫ 0 tan x arctan t 2 d t ∼ g ( x ) = x − sin x f(x)=\int^{\tan{x}}_{0}{\arctan{t^2}dt} \sim g(x)=x-\text{sin}x f(x)=∫0tanxarctant2dt∼g(x)=x−sinx,比较这两个无穷小的关系.
分析: f ′ ( x ) = arctan tan 2 x ⋅ sec x 2 ∼ x 2 ( tan 2 x + 1 ) ∼ x 2 f'(x)=\arctan{\text{tan}^2x}\,\cdot\, \sec{x^2} \sim x^2(\tan^2{x}+1) \sim x^2 f′(x)=arctantan2x⋅secx2∼x2(tan2x+1)∼x2,说明 f ( x ) ∼ x 3 3 f(x) \sim \frac{x^3}{3} f(x)∼3x3.
解: g ( x ) = x − sin x = x − ( x − x 3 3 ! + o ( x 3 ) ) ∼ 1 6 x 3 g(x) = x - \sin{x} = x - (x - \frac{x^3}{3!}+o(x^3)) \sim \frac{1}{6}{x^3} g(x)=x−sinx=x−(x−3!x3+o(x3))∼61x3,
再由 lim x → 0 ∫ 0 tan x arctan t 2 d t x 3 = lim x → 0 arctan tan 2 x ⋅ sec x 2 3 x 2 = 1 3 \lim\limits_{x \to 0}{\frac{\int^{\tan{x}}_{0}{\arctan{t^2}dt} }{x^3}}=\lim\limits_{x \to 0}{\frac{\arctan{\text{tan}^2x}\,\cdot\, \sec{x^2}}{3x^2}}=\frac{1}{3} x→0limx3∫0tanxarctant2dt=x→0lim3x2arctantan2x⋅secx2=31, f ( x ) ∼ x 3 3 f(x) \sim \frac{x^3}{3} f(x)∼3x3,
所以二者是同阶非等价的无穷小.
(二) 极限方程求参数问题
题目特征:
1. 给定一个含
a
、
b
\,a、b\,
a、b等参数的极限方程,求参数.
2. 确定常数,使
f
(
x
)
=
a
x
+
b
x
2
+
.
.
.
+
o
(
x
n
)
\,f(x)=ax+bx^2+...+o(x^n)
f(x)=ax+bx2+...+o(xn).
解题方法:
(
1
)
(1)
(1) 通分、二次项展开、抓大放小:
例. lim x → ∞ x 10 ( x + 1 ) n − x n = b ( ≠ 0 ) \lim\limits_{x \to \infty}{\frac{x^{10}}{(x+1)^n-x^n}}=b (\neq 0) x→∞lim(x+1)n−xnx10=b(=0),求 n 、 b \,n、b n、b.
例. lim x → ∞ ( x 2 + 2 x + 3 x − 1 − a x − b ) = 0 \lim\limits_{x \to \infty}{(\frac{x^2+2x+3}{x-1}-ax-b)}=0 x→∞lim(x−1x2+2x+3−ax−b)=0,求 a 、 b \,a、b a、b.
( 2 ) (2) (2) 直接观察出常见等价无穷小:
例. lim x → 0 sin x e x − a ( cos x − b ) = 5 \lim\limits_{x \to 0}{\frac{\sin{x}}{e^x-a}(\cos{x}-b)}=5 x→0limex−asinx(cosx−b)=5,求 a 、 b \,a、b a、b.
解: lim x → 0 sin x e x − a ( cos x − b ) = 5 ⇒ a = 1 \lim\limits_{x \to 0}{\frac{\sin{x}}{e^x-a}(\cos{x}-b)}=5 \Rightarrow a=1 x→0limex−asinx(cosx−b)=5⇒a=1,
lim x → 0 sin x e x − 1 ( cos x − b ) = 5 ⇒ b = − 4 \lim\limits_{x \to 0}{\frac{\sin{x}}{e^x-1}(\cos{x}-b)}=5 \Rightarrow b=-4 x→0limex−1sinx(cosx−b)=5⇒b=−4.
( 3 ) (3) (3) 泰勒展开:
例. 设 lim x → 0 ln ( 1 − 2 x + 3 x 2 ) + a x + b x 2 x 2 = 2 \lim\limits_{x \to 0}{\frac{\ln({1-2x+3x^2})+ax+bx^2}{x^2}}=2 x→0limx2ln(1−2x+3x2)+ax+bx2=2,求 a 、 b \,a、b\, a、b的值.
解: ln ( 1 − 2 x + 3 x 2 ) = ( − 2 x + 3 x 2 ) − ( − 2 x + 3 x 2 ) 2 2 + o ( x 2 ) = − 2 x + x 2 + o ( x 2 ) \ln{(1-2x+3x^2)} = (-2x+3x^2)-\frac{(-2x+3x^2)^2}{2}+o(x^2)=-2x+x^2+o(x^2) ln(1−2x+3x2)=(−2x+3x2)−2(−2x+3x2)2+o(x2)=−2x+x2+o(x2)
则 lim x → 0 ln ( 1 − 2 x + 3 x 2 ) + a x + b x 2 x 2 = lim x → 0 ( a − 2 ) x + ( b + 1 ) x 2 x 2 = 2 \,\lim\limits_{x \to 0}{\frac{\ln({1-2x+3x^2})+ax+bx^2}{x^2}}=\lim\limits_{x \to 0}{\frac{(a-2)x+(b+1)x^2}{x^2}}=2 x→0limx2ln(1−2x+3x2)+ax+bx2=x→0limx2(a−2)x+(b+1)x2=2,得 a = 2 、 b = 1 \,a=2、b=1 a=2、b=1.
(三) x x\, x的 n \,n\, n阶无穷小求参数问题
题目特征:
f
(
x
)
f(x)
f(x)是
x
\,x\,
x的
n
\,n\,
n阶无穷小,求参数.
解题方法:
一般需要泰勒展开.
例. 当 x → 0 \,x \to 0\, x→0时, e x − 1 + a x 1 + b x e^x-\frac{1+ax}{1+bx} ex−1+bx1+ax为 x \,x\, x的 3 \,3\, 3阶无穷小,求 a 、 b \,a、b\, a、b的值.
解:
( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + a ( a − 1 ) ( a − 2 ) 3 ! x 3 + o ( x 3 ) (1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + \frac{a(a-1)(a-2)}{3!}x^3+o(x^3) (1+x)a=1+ax+2!a(a−1)x2+3!a(a−1)(a−2)x3+o(x3),
1 1 + b x = 1 − b x + b 2 x 2 − b 3 x 3 + o ( x 3 ) \frac{1}{1+bx}=1-bx+b^2x^2-b^3x^3+o(x^3) 1+bx1=1−bx+b2x2−b3x3+o(x3),
1 + a x 1 + b x = ( 1 − b x + b 2 x 2 − b 3 x 3 ) [ 1 + a x ] = 1 + ( a − b ) x + ( b 2 − a b ) x 2 + ( a b 2 − b 3 ) x 3 + o ( x 3 ) \frac{1+ax}{1+bx}=(1-bx+b^2x^2-b^3x^3)[1+ax]=1+(a-b)x+(b^2-ab)x^2+(ab^2-b^3)x^3+o(x^3) 1+bx1+ax=(1−bx+b2x2−b3x3)[1+ax]=1+(a−b)x+(b2−ab)x2+(ab2−b3)x3+o(x3);
e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) = 1 + x + x 2 2 + x 3 6 + o ( x 3 ) e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3)=1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3) ex=1+x+2!x2+3!x3+o(x3)=1+x+2x2+6x3+o(x3),
e x − 1 + a x 1 + b x = ( 1 − a + b ) x + ( 1 2 + a b − b 2 ) x 2 + ( 1 6 − a b 2 + b 3 ) x 3 + o ( x 3 ) e^x-\frac{1+ax}{1+bx}=(1-a+b)x+(\frac{1}{2}+ab-b^2)x^2+(\frac{1}{6}-ab^2+b^3)x^3+o(x^3) ex−1+bx1+ax=(1−a+b)x+(21+ab−b2)x2+(61−ab2+b3)x3+o(x3),
因为 e x − 1 + a x 1 + b x \,e^x-\frac{1+ax}{1+bx} ex−1+bx1+ax为 x \,x\, x的 3 \,3\, 3阶无穷小,故 { 1 − a + b = 0 , 1 2 + a b − b 2 = 0 , 1 6 − a b 2 − b 3 ≠ 0 , \begin{cases} 1-a+b=0, \\ \frac{1}{2}+ab-b^2=0, \\ \frac{1}{6}-ab^2-b^3 \neq 0,\\ \end{cases} ⎩⎪⎨⎪⎧1−a+b=0,21+ab−b2=0,61−ab2−b3=0,
解得 a = 1 2 , b = − 1 2 \,a=\frac{1}{2},b=-\frac{1}{2} a=21,b=−21.
(四) 确定参数使 f ( x ) \,f(x)\, f(x)成为当 x → a \,x \to a\, x→a时阶数尽可能高的无穷小
不断对 f ( x ) \,f(x)\, f(x)求导,刚开始代入 x = a \,x=a\, x=a时 f ( n ) ( a ) \,f^{(n)}(a)\, f(n)(a)为 0 \,0 0,直到求导到无法确定 f ( n ) ( a ) \,f^{(n)}(a)\, f(n)(a)等于 0 \,0 0,即可解出参数.
(五) 确定阶数 n \,n\, n的范围
给出两组等价无穷小,锁定阶数 n \,n\, n.
12 极限保号性
极限保号性的三种形式:
(1) 若 lim x → a f ( x ) = A > 0 ( < 0 ) \,\lim\limits_{x \to a}f(x)=A>0(<0)\, x→alimf(x)=A>0(<0),则当 x → ⋅ \,x\to\cdot\, x→⋅时,有 f ( x ) > 0 ( < 0 ) \,f(x)>0(<0) f(x)>0(<0).
更加严谨的表述为:若 lim x → a f ( x ) = A > 0 ( < 0 ) \,\lim\limits_{x \to a}f(x)=A>0(<0)\, x→alimf(x)=A>0(<0),则存在 δ > 0 \,\delta>0 δ>0,当 0 < ∣ x − a ∣ < δ \,0<|x-a|<\delta\, 0<∣x−a∣<δ时,有 f ( x ) > 0 ( < 0 ) \,f(x)>0(<0) f(x)>0(<0).
此法也称脱帽法,即脱掉极限号. 反之不成立,因为不能确保 f ( x ) \,f(x)\, f(x)的极限存在.
与之相对的还有戴帽法,即戴上极限号.
戴帽法:
若 f ( x ) ⩾ 0 ( ⩽ 0 ) \,f(x)\geqslant0(\leqslant0)\, f(x)⩾0(⩽0),且 lim x → ⋅ f ( x ) = A \,\lim\limits_{x\to\cdot} f(x)=A\, x→⋅limf(x)=A,则 A ⩾ 0 ( ⩽ 0 ) \,A\geqslant0(\leqslant0) A⩾0(⩽0).
需要注意的是,脱帽法是严格不等于 0 \,0\, 0的,而戴帽法是可以取等的:
比如 f ( x ) = e − x > 0 \,f(x)=e^{-x}>0 f(x)=e−x>0, lim x → + ∞ f ( x ) = 0 \,\lim\limits_{x\to+\infty}f(x)=0 x→+∞limf(x)=0; g ( x ) = 0 g(x)=0 g(x)=0, lim x → + ∞ g ( x ) = 0 \,\lim\limits_{x\to+\infty} g(x)=0 x→+∞limg(x)=0,戴帽法均适用的.
反过来 lim x → + ∞ f ( x ) = 0 \,\lim\limits_{x\to+\infty}f(x)=0 x→+∞limf(x)=0,在 x → + ∞ 时 \,x\to+\infty\,时 x→+∞时 f ( x ) \,f(x)\, f(x)即可能是恒为 0 \,0\, 0的常值函数,也可能是 f ( x ) = e − x \,f(x)=e^{-x}\, f(x)=e−x这样恒大于 0 \,0\, 0的函数,脱帽法不适用.
(2) 若
f
(
x
)
⩾
g
(
x
)
\,f(x) \geqslant g(x)\,
f(x)⩾g(x),且
lim
f
(
x
)
=
A
\,\lim f(x)=A\,
limf(x)=A,
lim
x
→
⋅
g
(
x
)
=
B
\,\lim\limits_{x\to \cdot} g(x)=B\,
x→⋅limg(x)=B,则
A
⩾
B
\,A\geqslant B
A⩾B.
(3) 若
lim
x
→
⋅
f
(
x
)
>
lim
x
→
⋅
g
(
x
)
\,\lim\limits_{x \to \cdot}f(x) > \lim\limits_{x \to \cdot}g(x)\,
x→⋅limf(x)>x→⋅limg(x),则当
x
→
⋅
\,x\to\cdot\,
x→⋅时,有
f
(
x
)
>
g
(
x
)
\,f(x)>g(x)
f(x)>g(x).
极限保号性的应用:
(1) 判断极值点:
例. f ( 1 ) = 2 f(1) = 2 f(1)=2, lim x → 1 f ( x ) − 2 ( x − 1 ) 2 = 3 \lim\limits_{x \to 1}{\frac{f(x)-2}{(x-1)^2}=3} x→1lim(x−1)2f(x)−2=3,判断 x = 1 \,x=1\, x=1是什么点?
∵ lim x → 1 f ( x ) − 2 ( x − 1 ) 2 = 3 > 0 \because \lim\limits_{x \to 1}{\frac{f(x)-2}{(x-1)^2}=3>0} ∵x→1lim(x−1)2f(x)−2=3>0,
∴ ∃ δ > 0 \therefore \exist \delta>0 ∴∃δ>0,当 0 < ∣ x − 1 ∣ < δ 0<|x-1|<\delta 0<∣x−1∣<δ时,有
f ( x ) − 2 ( x − 1 ) 2 > 0 \frac{f(x)-2}{(x-1)^2}>0 (x−1)2f(x)−2>0,
∵ ( x − 1 ) 2 > 0 \because (x-1)^2>0 ∵(x−1)2>0,
∴ f ( x ) − 2 > 0 \therefore f(x)-2>0 ∴f(x)−2>0, f ( x ) > 2 f(x) > 2 f(x)>2,
⇒ f ( x ) > f ( 1 ) \Rightarrow f(x) > f(1) ⇒f(x)>f(1)
∴ x = 1 \therefore x=1\, ∴x=1为 f ( x ) \,f(x)\, f(x) 的极小值点.
(2) 判断拐点,思路同上.
13 数列极限储备知识
数列极限
定义:对 ∀ ϵ > 0 \,\forall\,\epsilon>0 ∀ϵ>0, ∃ N ∈ N + \,\exist \,N\in N^+ ∃N∈N+,使得当 n > N \,n>N\, n>N时,有 ∣ a n − a ∣ < ϵ |\,a_n-a|<\epsilon ∣an−a∣<ϵ,则 lim n → ∞ a n = a \lim\limits_{n\to\infty}a_n=a n→∞liman=a.
n → ∞ n\to\infty\, n→∞表示的是正无穷的含义(无需添加加号),因为 n \,n\, n从 1 \,1\, 1开始,必为正整数.
重要结论:改变收敛数列的有限项,不会改变数列的敛散性与极限值.
请读者深刻理解该结论,它同时也是经典的级数思想.
海涅定理
设 f ( x ) \,f(x)\, f(x)在 x 0 \,x_0\, x0的去心邻域内有定义,则 lim x → x 0 f ( x ) = A \,\lim\limits_{x\to x_0}f(x)=A\, x→x0limf(x)=A存在的充要条件是:对任一极限为 x 0 \,x_0\, x0的数列 { x n } ( x ≠ x 0 ) \,\{x_n\}\;(x\neq x_0) {xn}(x=x0),极限 lim n → ∞ f ( x n ) = A \,\lim\limits_{n\to \infty}f(x_n)=A\, n→∞limf(xn)=A存在.
海涅定理是联系数列极限与函数极限的工具. 数列是由一系列孤立的点组成,不连续且不可导. 因此很多函数极限的求解方法不能使用 (比如洛必达法则). 但根据海涅定理,就可以先将数列极限转换为函数极限,使用函数极限求解方法求出的极限值,就等于数列极限的极限值.
海涅定理的存在,使得等价无穷小和非零因子代入对数列极限仍然适用.
夹逼准则
(1) 准则内容:
如果数列 { x n } \,\{x_n\} {xn}、 { y n } \{y_n\} {yn}、 { z n } \{z_n\}\, {zn}满足:
a. ∃ N ∈ N + \exist N\in N^+ ∃N∈N+,当 n > N \,n>N\, n>N时,总有 y n ⩽ x n ⩽ z n \,y_n\leqslant x_n\leqslant z_n yn⩽xn⩽zn;
b. lim n → ∞ y n = lim n → ∞ z n = A \lim\limits_{n\to\infty}y_n=\lim\limits_{n\to\infty}z_n=A n→∞limyn=n→∞limzn=A.
则数列极限 { x n } \,\{x_n\}\, {xn}存在,且 lim n → ∞ x n = A \,\lim\limits_{n\to\infty}x_n=A n→∞limxn=A.
夹逼准则的本质是放缩思想,其用途非常广泛.
(2) 两种最基本的放缩方法:
n ⋅ u min ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max n\cdot u_{\text{min}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} n⋅umin⩽u1+u2+...+un⩽n⋅umax
u i ⩾ 0 u_i\geqslant 0\, ui⩾0时, 1 ⋅ u max ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max 1\cdot u_{\text{max}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} 1⋅umax⩽u1+u2+...+un⩽n⋅umax
例. 求以下极限: lim n → ∞ ( 2 n + 3 n + 4 n ) 1 n = 4 \lim\limits_{n \to \infty}(2^n+3^n+4^n)^{\frac{1}{n}}=4 n→∞lim(2n+3n+4n)n1=4
解:
显然, 4 n ⩽ 2 n + 3 n + 4 n ⩽ 3 ⋅ 4 n 4^n\leqslant2^n+3^n+4^n\leqslant 3\cdot4^n 4n⩽2n+3n+4n⩽3⋅4n
(基本放缩思想之一: u i ⩾ 0 u_i\geqslant 0\, ui⩾0时, 1 ⋅ u max ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max 1\cdot u_{\text{max}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} 1⋅umax⩽u1+u2+...+un⩽n⋅umax)
于是有: 4 ⩽ ( 2 n + 3 n + 4 n ) 1 n ⩽ 3 1 n ⋅ 4 4\leqslant(2^n+3^n+4^n)^{\frac{1}{n}}\leqslant 3^\frac{1}{n}\cdot4 4⩽(2n+3n+4n)n1⩽3n1⋅4 由 lim n → ∞ 4 = lim n → ∞ 3 1 n ⋅ 4 = 4 \,\lim\limits_{n\to\infty}4=\lim\limits_{n\to\infty}3^{\frac{1}{n}}\cdot4=4 n→∞lim4=n→∞lim3n1⋅4=4, lim n → ∞ ( 2 n + 3 n + 4 n ) 1 n = 4 \lim\limits_{n \to \infty}(2^n+3^n+4^n)^{\frac{1}{n}}=4 n→∞lim(2n+3n+4n)n1=4.
以上例题结论可推广为: lim n → ∞ ( a 1 n + a 2 n + . . . + a m n ) 1 n = max { a 1 , a 2 , . . . , a m } \color{Blue}\lim\limits_{n \to \infty}(a_1^n+a_2^n+...+a_m^n)^{\frac{1}{n}}=\max\{a_1, a_2,..., a_m\} n→∞lim(a1n+a2n+...+amn)n1=max{a1,a2,...,am}
定积分定义
(1) 定积分定义的理解:
定积分的定义为:设
f
(
x
)
\,f(x)\,
f(x)在区间
[
a
,
b
]
\,[a,b]\,
[a,b]上连续,则
∫
a
b
f
(
x
)
d
x
=
lim
λ
→
0
∑
i
=
1
n
f
(
ξ
i
)
Δ
x
i
,
λ
=
max
1
⩽
i
⩽
n
{
Δ
x
i
}
\int^b_af(x)\text{d}x=\lim\limits_{\lambda\to 0} \sum\limits^{n}_{i=1} f(\xi_i)\Delta x_i,\lambda=\max\limits_{1\leqslant i\leqslant n}\{\Delta x_i\}
∫abf(x)dx=λ→0limi=1∑nf(ξi)Δxi,λ=1⩽i⩽nmax{Δxi}
定积分的几何意义是函数在区间内所围曲边梯形的面积. 其定义使用思想是:将积分区间
[
a
,
b
]
\,[a,b]\,
[a,b]划分为
n
\,n\,
n份(大小不一定相同),得到
n
\,n\,
n个曲边梯形. 再将这些小曲边梯形的面积分别使用近似矩形的面积替代. 最后结合极限思想(当底边长度趋近于
0
\,0\,
0时,认为小曲边梯形的面积等于近似矩形面积),即可得到整个曲边梯形的面积,即定积分的值.
在定义中,
Δ
x
i
\Delta x_i\,
Δxi表示每一个小区间的区间长度. 在每一个小区间内任取一点
ξ
i
\,\xi_i
ξi,将其函数值
f
(
ξ
i
)
\,f(\xi_i)\,
f(ξi)作为小曲边梯形的近似高度. 于是
f
(
ξ
i
)
Δ
x
i
\,f(\xi_i)\Delta x_i\,
f(ξi)Δxi就表示每一个近似矩形的面积.
λ
\lambda\,
λ则是为了保证这些小区间中的最大区间长度趋近于
0
\,0\,
0(其他小区间就更趋近于
0
\,0\,
0了).
更多定积分相关内容见:不定积分与定积分.
(2) 定积分定义与 n \,n\, n项和极限的联系:
定积分的定义并未规定区间的划分方法,但不规则的划分方式不便出题. 所以一般只会考察将区间 n \,n\, n等份(大小相同)的问题,形式上就是 n \,n\, n项和的形式:
设
f
(
x
)
\,f(x)\,
f(x)在区间
[
a
,
b
]
\,[a,b]\,
[a,b]上连续,将区间
[
a
,
b
]
\,[a,b]\,
[a,b]平均分为
n
\,n\,
n等份,则
∫
a
b
f
(
x
)
d
x
=
lim
n
→
∞
b
−
a
n
∑
i
=
1
n
f
(
ξ
i
)
,
ξ
i
∈
[
a
+
b
−
a
n
⋅
(
i
−
1
)
,
a
+
b
−
a
n
⋅
i
]
\int^b_af(x)\text{d}x=\lim\limits_{n \to \infty} \frac{b-a}{n}\sum\limits_{i=1}^{n}f\big(\xi_i\big),\xi_i\in [a+\frac{b-a}{n}\cdot (i-1),a+\frac{b-a}{n}\cdot i]
∫abf(x)dx=n→∞limnb−ai=1∑nf(ξi),ξi∈[a+nb−a⋅(i−1),a+nb−a⋅i]
其中, b − a n \frac{b-a}{n}\, nb−a是小区间的区间长度. f ( ξ i ) f(\xi_i)\, f(ξi)是每一个小曲边梯形的近似高度 ( x = ξ i x=\xi_i\, x=ξi是每一个等距小区间内任取的一点).
于是,求 n \,n\, n项和极限的问题就可以转化为求定积分的问题.
特别地,当 a = 0 \,a=0 a=0, b = 1 b=1\, b=1时,取每一个小区间右端点的函数值( x = 1 , x = x=1,x= x=1,x=) 作为近似矩形的高,则有: lim n → ∞ 1 n ∑ i = 1 n f ( i n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{n}f\bigg(\frac{i}{n}\bigg)=\int_{0}^{1}f(x)\text{d}x n→∞limn1i=1∑nf(ni)=∫01f(x)dx

若选左端点则为: lim n → ∞ 1 n ∑ i = 1 n f ( i − 1 n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n \to \infty}{\frac{1}{n}\sum\limits_{i=1}^{n}{f(\frac{i-1}{n})}}=\int_{0}^{1}f(x)\text{d}x n→∞limn1i=1∑nf(ni−1)=∫01f(x)dx.
单调有界数列收敛定理
(1) 若数列 { x n } \,\{x_n\}\, {xn}单调,并且有界,那么 { x n } \,\{x_n\}\, {xn}必收敛,即 lim n → ∞ x n \,\lim\limits_{n\to\infty}x_n\, n→∞limxn存在.
(2) 若数列 { x n } \,\{x_n\}\, {xn}单调增加,并且有上界,那么 { x n } \,\{x_n\}\, {xn}必收敛,即 lim n → ∞ x n \,\lim\limits_{n\to\infty}x_n\, n→∞limxn存在.
(3) 若数列 { x n } \,\{x_n\}\, {xn}单调减少,并且有下界,那么 { x n } \,\{x_n\}\, {xn}必收敛,即 lim n → ∞ x n \,\lim\limits_{n\to\infty}x_n\, n→∞limxn存在.
压缩映射定理
定理1:已知
x
n
+
1
=
f
(
x
n
)
\,x_{n+1}=f(x_n)
xn+1=f(xn),满足
f
(
a
)
=
a
\,f(a)=a
f(a)=a,若
∣
x
n
+
1
−
a
∣
=
∣
f
(
x
n
)
−
f
(
a
)
∣
⩽
r
∣
x
n
−
a
∣
|x_{n+1}-a|=|f(x_n)-f(a)|\leqslant r|x_n-a|
∣xn+1−a∣=∣f(xn)−f(a)∣⩽r∣xn−a∣ 且
r
<
1
\,r<1
r<1,则有
lim
n
→
∞
x
n
=
a
\lim\limits_{n\to\infty}x_n=a
n→∞limxn=a. 其中
r
\,r\,
r称为压缩常数.
推导:
0 ⩽ ∣ x n + 1 − a ∣ = ∣ f ( x n ) − f ( a ) ∣ ⩽ r ∣ x n − a ∣ ⩽ r 2 ∣ x n − 1 − a ∣ ⩽ . . . ⩽ r n ∣ x 1 − a ∣ 0\leqslant|x_{n+1}-a|=|f(x_n)-f(a)|\leqslant r|x_n-a|\leqslant r^2|x_{n-1}-a|\leqslant...\leqslant r^n|x_1-a| 0⩽∣xn+1−a∣=∣f(xn)−f(a)∣⩽r∣xn−a∣⩽r2∣xn−1−a∣⩽...⩽rn∣x1−a∣lim n → ∞ r n ∣ x 1 − a ∣ = 0 \lim\limits_{n\to\infty} r^n|x_1-a|=0 n→∞limrn∣x1−a∣=0,由夹逼准则, lim n → ∞ ∣ x n + 1 − a ∣ = 0 \,\lim\limits_{n\to\infty}|x_{n+1}-a|=0 n→∞lim∣xn+1−a∣=0. 即 lim n → ∞ x n = a \lim\limits_{n\to\infty}x_n=a n→∞limxn=a.
定理2:
x
n
+
1
=
f
(
x
n
)
x_{n+1}=f(x_n)
xn+1=f(xn),若
f
(
x
)
\,f(x)\,
f(x)可导,且
f
′
(
x
)
⩽
r
(
0
<
r
<
1
)
,
f'(x)\leqslant r \;\;\;(0<r<1),
f′(x)⩽r(0<r<1), 则
{
x
n
}
\,\{x_n\}\,
{xn}收敛. 其中
r
\,r\,
r称为压缩常数.
推导: ∣ f ( x n ) − f ( a ) ∣ = ∣ f ′ ( ξ ) ( x n − a ) ∣ = ∣ f ′ ( ξ ) ∣ ∣ x n − a ∣ ⩽ r ∣ x n − a ∣ |f(x_n)-f(a)|=|f'(\xi)(x_n-a)|=|f'(\xi)||x_n-a|\leqslant r|x_n-a| ∣f(xn)−f(a)∣=∣f′(ξ)(xn−a)∣=∣f′(ξ)∣∣xn−a∣⩽r∣xn−a∣,由此转化为定理1的情况.
注意:
(1) 从推导过程可以看出压缩映射定理本质上是夹逼准则的应用,因此往往需要结合放缩思想.
(2) 压缩映射定理通常用于非单调数列极限存在性的证明,但也可用于单调数列.
(3) 定理中的
a
\,a\,
a就是先斩后奏对递推关系两边取极限所得的界.
例. 设数列 { x n } \,\{x_n\}\, {xn}满足 x 1 = 1 \,x_1=1 x1=1, x n + 1 = 1 + 1 x n x_{n+1}=1+\frac{1}{x_n} xn+1=1+xn1, n = 1 , 2 , . . . n=1,2,... n=1,2,...,证明 { x n } \,\{x_n\}\, {xn}极限存在并求之.
证:显然, x n ⩾ 1 x_n\geqslant1 xn⩾1.
(根据递推式分析求出 A = 1 + 5 2 \,A=\frac{1+\sqrt{5}}{2}\, A=21+5)
令 a = 1 + 5 2 \,a=\frac{1+\sqrt{5}}{2} a=21+5,于是有
∣ x n − a ∣ = ∣ 1 + 1 x n − ( 1 + 1 a ) ∣ = ∣ 1 x n − 1 a ∣ |x_n-a|=\bigg|1+\frac{1}{x_n}-(1+\frac{1}{a})\bigg|=\bigg|\frac{1}{x_n}-\frac{1}{a}\bigg| ∣xn−a∣=∣∣∣∣1+xn1−(1+a1)∣∣∣∣=∣∣∣∣xn1−a1∣∣∣∣ = ∣ x n − a a x n ∣ ⩽ 1 a ∣ x n − a ∣ =\bigg|\frac{x_n-a}{ax_n}\bigg|\leqslant\frac{1}{a}|x_n-a| =∣∣∣∣axnxn−a∣∣∣∣⩽a1∣xn−a∣因为 1 a < 1 \frac{1}{a}<1 a1<1,所以 { x n } \{x_n\} {xn}极限存在.
令 A = lim n → ∞ x n \,A=\lim\limits_{n\to\infty}x_n A=n→∞limxn,对递推式两边去极限求得 A = 1 + 5 2 \,A=\frac{1+\sqrt{5}}{2} A=21+5 (实际上在分析时已经"猜"出).
极限存在性证明基本方法
证明极限存在性,即证明 a n ∃ \,a_n \exist\, an∃、证明 { a n } \,\{a_{n}\}\, {an}收敛:
建议优先证明数列的单调性. 因为若能确定单调性,就能指导有界性的证明. 如果单调递增,就证上界,如果单调递减,就证下界. 如果发现不单调,可能就需要考虑压缩映射定理. 反之,若仅知道数列的一个上界或下界,是不能确定其单调性的.
证明单调性的方法总结
(1) 作差:判断 a n + 1 − a n \,a_{n+1}-a_{n}\, an+1−an与 0 \,0\, 0的关系. 若大于等于 0 \,0\, 0,则数列单调增加;若小于等于 0 \,0\, 0,则数列单调减少.
如: a n + 1 = 1 2 ( a n + 1 a n ) a_{n+1}=\frac{1}{2}(a_n+\frac{1}{a_{n}}) an+1=21(an+an1),
a n + 1 − a n = 1 2 ( a n + 1 a n ) − a n = 1 − a n 2 2 a n a_{n+1}-a_n=\frac{1}{2}(a_n+\frac{1}{a_{n}})-a_n=\frac{1-a_n^2}{2a_n} an+1−an=21(an+an1)−an=2an1−an2.
根据已知条件,判断 1 − a n 2 2 a n \frac{1-a_n^2}{2a_n} 2an1−an2正负,即可确定出单调性.
有时需要结合几个重要不等式考虑!
(2) 作商:判断 a n + 1 a n \,\frac{a_{n+1}}{a_{n}} anan+1 ( a n > 0 a_n>0 an>0) 和 1 \,1\, 1的大小关系. 若大于等于 1 \,1 1,则数列单调增加;若小于等于 1 \,1 1,则数列单调减少.
(3) 数学归纳法.
如:证明 { a n } \,\{a_n\}\, {an}单调递增,即对 ∀ n \,\forall n\, ∀n有, a n + 1 > a n a_{n+1}>a_n an+1>an.
step 1. 当 n = 1 \,n=1\, n=1时, a 2 > a 1 a_2>a_1 a2>a1;
step 2. 假设 n = k \,n=k\, n=k时, a k + 1 > a k a_{k+1}>a_{k}\, ak+1>ak成立,
step 3. 若能根据 a k + 1 > a k \,a_{k+1}>a_{k}\, ak+1>ak推导出 a k + 2 > a k + 1 \,a_{k+2}>a_{k+1} ak+2>ak+1,则结论成立.
(4) 连续化:若 { x n } \,\{x_n\}\, {xn}的通项已知,为 f ( n ) \,f(n) f(n),则可设为 f ( x ) ( x > 0 ) \,f(x)\;(x>0) f(x)(x>0). 若 f ′ ( x ) ⩾ 0 \,f'(x)\geqslant 0 f′(x)⩾0,则数列单调增加;若 f ′ ( x ) ⩽ 0 \,f'(x)\leqslant 0 f′(x)⩽0,则数列单调减少.
(5) 结合重要不等式.
(6) ⋆ {\color{Red} \star} ⋆ 递推函数法:
step 1. 由递推关系 x n + 1 = f ( x n ) \,x_{n+1}=f(x_n)\, xn+1=f(xn)构造函数 y = f ( x ) \,y=f(x)\, y=f(x),计算 f ′ ( x ) \,f'(x) f′(x).
如: x n + 1 = 6 + x n ⇒ y = 6 + x x_{n+1}=\sqrt{6+x_n}\Rightarrow y=\sqrt{6+x} xn+1=6+xn⇒y=6+x
step 2. 若
f
′
(
x
)
⩾
0
\,f'(x) \geqslant 0
f′(x)⩾0,则
{
x
n
}
\,\{x_n\}\,
{xn}单调,此时有:
a.
x
1
⩾
x
2
x_1\geqslant x_2
x1⩾x2,数列单调增加.
b.
x
1
⩽
x
2
x_1\leqslant x_2
x1⩽x2,数列单调减少.
若 f ′ ( x ) ⩽ 0 \,f'(x) \leqslant 0 f′(x)⩽0,则数列不单调. 具体来说,此时奇偶子数列都是单调数列但单调性相反.
注意:
(1) 此法证明数列单调性非常有效,几乎可以解决所有问题.
(2) 在构造函数时,最好先确定 x \,x\, x的范围(即数列的界),这有利于导数正负的判断.
(7) 中值定理( L \text{L} L). 当递推关系出现 f ( Δ 1 ) − f ( Δ 2 ) \,f(\Delta_1)-f(\Delta_2) f(Δ1)−f(Δ2),要重点考虑.
(8) 预判数列的单调性:先算出数列前几项的值,大致判断增减性.
证明有界性的方法总结
(1) 数学归纳法.
(2) 结合重要不等式.
如: a n + 1 = 1 2 ( a n + 1 a n ) ⩾ 1 a_{n+1}=\frac{1}{2}(a_n+\frac{1}{a_{n}}) \geqslant 1 an+1=21(an+an1)⩾1.
1 4 ( 3 x n + a x n 3 ) ⩾ x n ⋅ x n ⋅ x n ⋅ a x n 3 4 = a 4 \frac{1}{4}(3x_n+\frac{a}{x^3_n}) \geqslant \sqrt[4]{x_n \cdot x_n \cdot x_n \cdot \frac{a}{x_n^3}}=\sqrt[4]{a} 41(3xn+xn3a)⩾4xn⋅xn⋅xn⋅xn3a=4a.
(3) 放缩.
如: a n = 1 1 2 + 1 2 2 + . . . + 1 n 2 a_n=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2} an=121+221+...+n21,证明数列收敛.
由 a n + 1 − a n = 1 ( n + 1 ) 2 > 0 \,a_{n+1}-a_n=\frac{1}{(n+1)^2}>0 an+1−an=(n+1)21>0,确定数列单调增加.
下面证数列有上界: a n = 1 1 ⋅ 1 + 1 2 ⋅ 2 + . . . + 1 n ⋅ n ⩽ 1 + 1 1 ⋅ 2 + . . . + 1 ( n − 1 ) ⋅ n = 2 − 1 n ⩽ 2 a_n=\frac{1}{1\cdot1}+\frac{1}{2\cdot2}+...+\frac{1}{n\cdot n}\leqslant 1+\frac{1}{1\cdot2}+...+\frac{1}{(n-1)\cdot n}=2-\frac{1}{n}\leqslant2 an=1⋅11+2⋅21+...+n⋅n1⩽1+1⋅21+...+(n−1)⋅n1=2−n1⩽2. 数列收敛.
(4) ⋆ {\color{Red} \star} ⋆ 预判数列的界:先尝试直接两边取极限求出极限值,此极限值必为数列的一个界. 此法也叫先斩后奏.
如: a n + 1 = 2 + a n ⇒ A = 2 + A ⇒ A = 2 a_{n+1}=\sqrt{2+a_{n}} \Rightarrow A = \sqrt{2+A} \Rightarrow A=2 an+1=2+an⇒A=2+A⇒A=2. 那么在证明有界性时,就应先尝试证明 a n ⩽ 2 a_{n} \leqslant2 an⩽2. 不需要靠猜,个别题目的界可能很复杂.
14 数列极限求解与极限存在性证明思路
(一) 已知数列通项
(1) 易算极限
已知数列通项的易算极限,可直接通过海涅定理转换为函数极限求出.
例. 求以下数列极限:
lim n → ∞ [ n tan ( sin 1 n ) ] n 2 \lim\limits_{n\to\infty}\bigg[n\text{tan}(\text{sin}\frac{1}{n})\bigg]^{n^2} n→∞lim[ntan(sinn1)]n2
解:
由海涅定理,令 x = 1 n \,x=\frac{1}{n}\; x=n1( x → 0 + \,x\to0^+ x→0+),
lim n → ∞ [ n tan ( sin 1 n ) ] n 2 = lim x → 0 + [ tan ( sin x ) x ] 1 x 2 = lim x → 0 + e 1 x 2 ln tan ( sin x ) x \lim\limits_{n\to\infty}\bigg[n\text{tan}(\text{sin}\frac{1}{n})\bigg]^{n^2}=\lim\limits_{x\to0^+}\bigg[\frac{\text{tan}(\text{sin}x)}{x}\bigg]^{\frac{1}{x^2}}=\lim\limits_{x\to0^+}e^{\frac{1}{x^2}\text{ln}\frac{\text{tan}(\text{sin}x)}{x}} n→∞lim[ntan(sinn1)]n2=x→0+lim[xtan(sinx)]x21=x→0+limex21lnxtan(sinx) 其中, lim x → 0 + 1 x 2 ln tan ( sin x ) x = lim x → 0 + tan ( sin x ) − x x 3 \lim\limits_{x\to0^+}\frac{1}{x^2}\text{ln}\frac{\text{tan}(\text{sin}x)}{x}=\lim\limits_{x\to0^+}\frac{\text{tan}(\text{sin}x)-x}{x^3} x→0+limx21lnxtan(sinx)=x→0+limx3tan(sinx)−x = lim x → 0 + tan ( sin x ) − sin x x 3 + lim x → 0 + sin x − x x 3 = 1 3 − 1 6 = 1 6 =\lim\limits_{x\to0^+}\frac{\text{tan}(\text{sin}x)-\text{sin}x}{x^3}+\lim\limits_{x\to0^+}\frac{\text{sin}x-x}{x^3}=\frac{1}{3}-\frac{1}{6}=\frac{1}{6} =x→0+limx3tan(sinx)−sinx+x→0+limx3sinx−x=31−61=61 因此,
lim n → ∞ [ n tan ( sin 1 n ) ] n 2 = e 1 6 \lim\limits_{n\to\infty}\bigg[n\text{tan}(\text{sin}\frac{1}{n})\bigg]^{n^2}=e^{\frac{1}{6}} n→∞lim[ntan(sinn1)]n2=e61
(2) n n\, n项和极限、 n n\, n项积极限
可以求和(积)
思路:
先求和(积),得到一个易算极限,再使用海涅定理求极限.
对于 n \,n\, n项和极限,常使用裂项等方法进行直接计算.
例. 求 lim n → ∞ [ 1 1 × 2 + 1 2 × 3 + . . . + 1 n × ( n + 1 ) ] \,\lim\limits_{n \to \infty}{[\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+...+\frac{1}{n \times (n+1)}]} n→∞lim[1×21+2×31+...+n×(n+1)1]
解: 1 1 × 2 + 1 2 × 3 + . . . + 1 n × ( n + 1 ) = n n + 1 \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+...+\frac{1}{n \times (n+1)}=\frac{n}{n+1} 1×21+2×31+...+n×(n+1)1=n+1n
由海涅定理,令 x = n ( x → + ∞ ) \,x=n\;(x\to+\infty) x=n(x→+∞),则
lim n → ∞ [ 1 1 × 2 + 1 2 × 3 + . . . + 1 n × ( n + 1 ) ] = lim n → ∞ n n + 1 = lim x → + ∞ x x + 1 = 1 \lim\limits_{n \to \infty}{[\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+...+\frac{1}{n \times (n+1)}]}=\lim\limits_{n \to \infty}\frac{n}{n+1}=\lim\limits_{x \to +\infty}\frac{x}{x+1}=1 n→∞lim[1×21+2×31+...+n×(n+1)1]=n→∞limn+1n=x→+∞limx+1x=1
裂项公式:
1 n ( n + k ) = 1 k ( 1 n − 1 n + k ) \frac{1}{n(n+k)}=\frac{1}{k}\big(\frac{1}{n}-\frac{1}{n+k}\big) n(n+k)1=k1(n1−n+k1)
n n\, n前面的系数不影响裂项公式的使用:
1 a n ( a n + k ) = 1 k ( 1 a n − 1 a n + k ) \frac{1}{an(an+k)}=\frac{1}{k}\big(\frac{1}{an}-\frac{1}{an+k}\big) an(an+k)1=k1(an1−an+k1)
分母两个因子的公差影响最后系数的值:
1 ( n − 2 k ) ( n + 3 k ) = 1 5 k ( 1 n − 1 n + k ) \frac{1}{(n-2k)(n+3k)}=\frac{1}{5k}\big(\frac{1}{n}-\frac{1}{n+k}\big) (n−2k)(n+3k)1=5k1(n1−n+k1)
对于
n
\,n\,
n项积极限,常见以下两种连锁化简的方式:
(1) 平方差公式
如:
lim
n
→
∞
(
1
+
x
)
(
1
+
x
2
)
.
.
.
(
1
+
x
2
n
)
(
∣
x
∣
<
1
)
\lim\limits_{n \to \infty}{(1+x)(1+x^2)...(1+x^{2^n})}\,(|x|<1)
n→∞lim(1+x)(1+x2)...(1+x2n)(∣x∣<1), 乘以
(
1
−
x
)
(1-x)
(1−x).
(2)
sin
2
x
=
2
sin
x
cos
x
\sin{2x} = 2\sin{x}\cos{x}
sin2x=2sinxcosx
如:
lim
n
→
∞
cos
x
2
⋅
cos
x
4
⋅
⋅
⋅
cos
x
2
n
(
x
≠
0
)
\lim\limits_{n \to \infty} \cos{\frac{x}{2}}·\cos{\frac{x}{4}···\cos{\frac{x}{2^n}}}\, (x \neq 0)
n→∞limcos2x⋅cos4x⋅⋅⋅cos2nx(x=0),分子分母同乘
2
sin
x
2
n
2\sin{\frac{x}{2^n}}
2sin2nx.
无法求和(积)
思路:
根据题目特点选择使用夹逼准则或定积分定义求解 (当然,也可以是二者结合).
夹逼准则和定积分定义的选择:
直觉:关注每一项中“变”与“不变”的部分是否同阶.
(1) 若不同阶:优先考虑夹逼准则.
比如: lim n → ∞ ( n n 2 + 1 + n n 2 + 2 + . . . + n n 2 + n ) \lim\limits_{n\to \infty}(\frac{n}{{\color{Blue}n^2}+{\color{Red}1}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}2}}+...+\frac{n}{{\color{Blue}n^2}+{\color{Red}n}}) n→∞lim(n2+1n+n2+2n+...+n2+nn) 分母中不变的部分阶数为 2 \,2\, 2(蓝色),变的部分阶数为 1 \,1\, 1(红色). 二者不同,应考虑夹逼准则.
又比如: lim n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 . . . + 1 n 2 + n ) \lim\limits_{n\to \infty}(\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}1}}}+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}2}}}...+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}n}}}) n→∞lim(n2+11+n2+21...+n2+n1)
分母中不变的部分阶数为根号下的 2 \,2\, 2(蓝色),变的部分阶数为根号下的 1 \,1\, 1(红色). 二者不同,应考虑夹逼准则.
(2) 若同阶:优先考虑定积分定义.
比如: lim n → ∞ ( 1 n + 1 + 1 n + 2 + . . . + 1 n + n ) \lim\limits_{n\to \infty}(\frac{1}{{\color{Blue}n}+{\color{Red}1}}+\frac{1}{{\color{Blue}n}+{\color{Red}2}}+...+\frac{1}{{\color{Blue}n}+{\color{Red}n}}) n→∞lim(n+11+n+21+...+n+n1)
分母中不变的部分阶数为 1 \,1\, 1(蓝色),变的部分阶数为 1 \,1\, 1(红色). 二者相同,应考虑定积分定义.
又比如: lim n → ∞ ( n n 2 + 1 2 + n n 2 + 2 2 + . . . + n n 2 + n 2 ) \lim\limits_{n\to \infty}(\frac{n}{{\color{Blue}n^2}+{\color{Red}1^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}2^2}}+...+\frac{n}{{\color{Blue}n^2}+{\color{Red}n^2}}) n→∞lim(n2+12n+n2+22n+...+n2+n2n)
分母中不变的部分阶数为 2 \,2\, 2(蓝色),变的部分阶数为 2 \,2\, 2(红色). 二者相同,应考虑定积分定义.
以上的判断是基于:使用夹逼准则要求两侧放缩的极限值相同. 如果只是改变每一项中阶数较小的变的部分,并不会影响到极限值(此时变的部分与不变的部分阶数不同). 而如果变得部分和不变的部分阶数相同,说明这两个部分都是阶数最大的,因此会对最终的极限结果造成直接影响.
若读者实在难以判断,请优先使用定积分定义尝试!因为定积分定义方法相对固定,可以很快判断出是否能否用其求解. 而夹逼准则使用的放缩思想非常灵活,就很难确定了.
case 1. 使用夹逼准则:
例. 求下列极限: lim n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 . . . + 1 n 2 + n ) \lim\limits_{n\to \infty}(\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}1}}}+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}2}}}...+\frac{1}{\sqrt{{\color{Blue}n^2}+{\color{Red}n}}}) n→∞lim(n2+11+n2+21...+n2+n1) 解:
令 x n = lim n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 . . . + 1 n 2 + n ) \,x_n=\lim\limits_{n\to \infty}(\frac{1}{\sqrt{{n^2}+{1}}}+\frac{1}{\sqrt{{n^2}+{2}}}...+\frac{1}{\sqrt{{n^2}+{n}}})\, xn=n→∞lim(n2+11+n2+21...+n2+n1)
n n 2 + n ⩽ x n ⩽ n n 2 + 1 \frac{n}{\sqrt{n^2+n}}\leqslant x_n\leqslant\frac{n}{\sqrt{n^2+1}} n2+nn⩽xn⩽n2+1n (基本放缩思想之一: n ⋅ u min ⩽ u 1 + u 2 + . . . + u n ⩽ n ⋅ u max n\cdot u_{\text{min}}\leqslant u_1+u_2+...+u_n\leqslant n\cdot u_{\text{max}} n⋅umin⩽u1+u2+...+un⩽n⋅umax)
由 lim n → ∞ n n 2 + n = lim n → ∞ n n 2 + 1 = 1 \lim\limits_{n\to \infty}\frac{n}{\sqrt{n^2+n}}=\lim\limits_{n\to \infty}\frac{n}{\sqrt{n^2+1}}=1 n→∞limn2+nn=n→∞limn2+1n=1, lim n → ∞ x n = 1 \lim\limits_{n\to \infty}x_n=1 n→∞limxn=1.
case 2. 使用定积分定义:
公式:
lim
n
→
∞
1
n
∑
i
=
1
n
f
(
i
n
)
=
lim
n
→
∞
1
n
∑
i
=
1
n
f
(
i
−
1
n
)
=
∫
0
1
f
(
x
)
d
x
\lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{n}f\bigg(\frac{i}{n}\bigg)=\lim\limits_{n \to \infty}{\frac{1}{n}\sum\limits_{i=1}^{n}{f\bigg(\frac{i-1}{n}\bigg)}}=\int_{0}^{1}f(x)\text{d}x
n→∞limn1i=1∑nf(ni)=n→∞limn1i=1∑nf(ni−1)=∫01f(x)dx
lim
n
→
∞
1
n
∑
i
=
1
l
n
f
(
i
n
)
=
∫
0
k
f
(
x
)
d
x
\lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{ln}f\bigg(\frac{i}{n}\bigg)=\int_{0}^{k}f(x)\text{d}x
n→∞limn1i=1∑lnf(ni)=∫0kf(x)dx
仅仅记住以上的公式对于要求较高的读者是绝对不够的. 因为考研已经考过并且套用公式过于简单,难以体现考生对定积分定义的深刻理解,恐不会再考. 请读者一定在理解定积分定义的基础上,继续掌握下面的通法.
求解定积分定义求
n
\,n\,
n项和极限的通法:
先将极限整理为
lim
n
→
∞
1
n
∑
i
=
1
i
f
(
i
,
n
)
\,\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{i=1}^{i}f(i,n)\,
n→∞limn1i=1∑if(i,n)的形式,按以下三个步骤分析出定积分:
step 1. 将极限中“变化的量”写为
x
\,x
x,得到被积函数.
step 2. 变化的量的极限范围,就是积分区间.
step 3. 观察积分区间分成了多少份,每一个小区间的区间长度为多少,决定是否在积分前补系数.
注意:每个小曲边梯形并不一定使用右端点的函数值作为近似高度. 使用此方法可以无需考虑这一点. “变化的量”则是指提出 1 n \,\frac{1}{n}\, n1后变形得到的和式中含 i \,i\, i和 n \,n\, n的变化部分,
例1. 求以下极限: lim n → ∞ n n 2 + 1 2 + n n 2 + 2 2 + n n 2 + 4 2 + n n 2 + 6 2 . . . + n n 2 + ( 4 n ) 2 \lim\limits_{n\to\infty}\frac{n}{{\color{Blue}n^2}+{\color{Red}1^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}2^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}4^2}}+\frac{n}{{\color{Blue}n^2}+{\color{Red}6^2}}...+\frac{n}{{\color{Blue}n^2}+{\color{Red}(4n)^2}} n→∞limn2+12n+n2+22n+n2+42n+n2+62n...+n2+(4n)2n 解:
令 I = n n 2 + 1 2 + n n 2 + 2 2 + n n 2 + 4 2 + n n 2 + 6 2 . . . + n n 2 + ( 4 n ) 2 \,I=\frac{n}{n^2+1^2}+\frac{n}{n^2+2^2}+\frac{n}{n^2+4^2}+\frac{n}{n^2+6^2}...+\frac{n}{n^2+(4n)^2} I=n2+12n+n2+22n+n2+42n+n2+62n...+n2+(4n)2n,
由于改变收敛数列的有限项,不会改变数列的敛散性与极限值,
I = n n 2 + 2 2 + n n 2 + 4 2 + n n 2 + 6 2 + . . . + n n 2 + ( 4 n ) 2 = ∑ i = 1 2 n n n 2 + ( 2 i ) 2 = 1 n ∑ i = 1 2 n 1 1 + ( 2 i n ) 2 I=\frac{n}{n^2+2^2}+\frac{n}{n^2+4^2}+\frac{n}{n^2+6^2}+...+\frac{n}{n^2+(4n)^2}=\sum\limits_{i=1}^{2n}\frac{n}{n^2+(2i)^2}=\frac{1}{n}\sum\limits_{i=1}^{2n}\frac{1}{1+(\frac{2i}{n})^2} I=n2+22n+n2+42n+n2+62n+...+n2+(4n)2n=i=1∑2nn2+(2i)2n=n1i=1∑2n1+(n2i)21 /**
使用通法的三步分析出定积分:
step1. 将极限中“变化的量”写为 x \,x x,得到被积函数:
x : 2 i n , f ( x ) = 1 1 + x 2 x:\frac{2i}{n},f(x) = \frac{1}{1+x^2} x:n2i,f(x)=1+x21
step 2. 变化的量的极限范围,就是积分区间:
lim n → ∞ 2 ⋅ 1 2 n = 0 \lim\limits_{n\to\infty}\frac{2\cdot 1}{2n}=0 n→∞lim2n2⋅1=0, lim n → ∞ 2 ⋅ 2 n n = 4 \lim\limits_{n\to\infty}\frac{2\cdot 2n}{n}=4 n→∞limn2⋅2n=4,积分区间: [ 0 , 4 ] [0,4] [0,4];
step 3. 观察积分区间分成了多少份,每一个小区间的区间长度为多少,决定是否在积分前补系数:
从求和符号可以看出积分区间被分为 2 n \,2n\, 2n份,每个小区间的长度就应该为 2 n \,\frac{2}{n} n2,因此需补系数 2 \,2 2.
**/
于是, I = 1 2 ⋅ 2 n ∑ i = 1 2 n 1 1 + ( 2 i n ) 2 = 1 2 ∫ 0 4 1 1 + x 2 d x = 1 2 arctan 4 I=\frac{1}{2}\cdot\frac{2}{n}\sum\limits_{i=1}^{2n}\frac{1}{1+(\frac{2i}{n})^2}=\frac{1}{2}\int^4_0\frac{1}{1+x^2}\text{d}x=\frac{1}{2}\text{arctan}4 I=21⋅n2i=1∑2n1+(n2i)21=21∫041+x21dx=21arctan4
例2. 求以下极限: lim n → ∞ ( a 1 n − 1 ) ∑ k = 1 n [ a k n sin ( a 2 k − 1 2 n ) ] , ( a ≠ 0 ) \lim\limits_{n\to\infty}(a^{\frac{1}{n}}-1)\sum\limits_{k=1}^n\big[a^{\frac{k}{n}}\text{sin}(a^{\frac{2k-1}{2n}})\big],(a\neq 0) n→∞lim(an1−1)k=1∑n[anksin(a2n2k−1)],(a=0) 解:
令 I = lim n → ∞ ( a 1 n − 1 ) ∑ k = 1 n [ a k n sin ( a 2 k − 1 2 n ) ] ( a ≠ 0 ) \,I=\lim\limits_{n\to\infty}(a^{\frac{1}{n}}-1)\sum\limits_{k=1}^n\big[a^{\frac{k}{n}}\text{sin}(a^{\frac{2k-1}{2n}})\big]\;\;(a\neq 0) I=n→∞lim(an1−1)k=1∑n[anksin(a2n2k−1)](a=0),
由 x → 0 \,x\to 0\, x→0时, a x − 1 ∼ x ln a a^x-1\sim x\text{ln}a ax−1∼xlna,得 n → ∞ \,n\to \infty\, n→∞时, a 1 n − 1 ∼ 1 n ⋅ ln a \,a^{\frac{1}{n}}-1\sim\frac{1}{n}\cdot\text{ln}a an1−1∼n1⋅lna,于是: I = ln a lim n → ∞ 1 n ∑ k = 1 n [ a k n sin ( a 2 k − 1 2 n ) ] = ln a lim n → ∞ 1 n ∑ k = 1 n [ a 1 2 n a 2 k − 1 2 n sin ( a 2 k − 1 2 n ) ] = ln a lim n → ∞ 1 n ∑ k = 1 n [ a 2 k − 1 2 n sin ( a 2 k − 1 2 n ) ] , I=\text{ln}a\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n\big[a^{\frac{k}{n}}\text{sin}(a^{\frac{2k-1}{2n}})\big]=\text{ln}a\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n\big[a^{\frac{1}{2n}}a^{\frac{2k-1}{2n}}\text{sin}(a^{\frac{2k-1}{2n}})\big]=\text{ln}a\lim\limits_{n\to\infty}\frac{1}{n}\sum\limits_{k=1}^n\big[a^{\frac{2k-1}{2n}}\text{sin}(a^{\frac{2k-1}{2n}})\big], I=lnan→∞limn1k=1∑n[anksin(a2n2k−1)]=lnan→∞limn1k=1∑n[a2n1a2n2k−1sin(a2n2k−1)]=lnan→∞limn1k=1∑n[a2n2k−1sin(a2n2k−1)], /**
使用通法的三步分析出定积分:
step1. 将极限中“变化的量”写为 x \,x x,得到被积函数:
x : 2 k − 1 2 n , f ( x ) = a x sin a x x:\frac{2k-1}{2n},f(x) = a^x\text{sin}a^x x:2n2k−1,f(x)=axsinax
step 2. 变化的量的极限范围,就是积分区间:;
lim n → ∞ 2 ⋅ 1 − 1 2 n = 0 \lim\limits_{n\to\infty}\frac{2\cdot 1-1}{2n}=0 n→∞lim2n2⋅1−1=0, lim n → ∞ 2 ⋅ n − 1 2 n = 1 \lim\limits_{n\to\infty}\frac{2\cdot n-1}{2n}=1 n→∞lim2n2⋅n−1=1,积分区间: [ 0 , 1 ] [0,1] [0,1];
step 3. 观察积分区间分成了多少份,每一个小区间的区间长度为多少,决定是否在积分前补系数:
从求和符号可以看出积分区间被分为 n \,n\, n份,每个小区间的长度为 1 \,1 1,因此无需补系数.
**/
于是, I = ln a ∫ 0 1 a x sin a x d x = ∫ 0 1 sin a x d ( a x ) = − cos a x ∣ 0 1 = cos 1 − cos a . I=\text{ln}a\int^1_0a^x\text{sin}a^x\text{d}x=\int^1_0\text{sin}a^x\text{d}(a^x)=-\text{cos}a^x\big|^1_0=\text{cos}1-\text{cos}a. I=lna∫01axsinaxdx=∫01sinaxd(ax)=−cosax∣∣01=cos1−cosa.
(二) 已知数列递推关系
特征:题目未给出通项公式,而是给出递推关系: x n + 1 = f ( x n ) x_{n+1}=f(x_n) xn+1=f(xn). 常常需要先证明数列极限的存在性,再求之.
基本思路:
step 1. 根据递推关系
x
n
+
1
=
f
(
x
n
)
\,x_{n+1}=f(x_n)
xn+1=f(xn),证明数列极限存在,即
lim
n
→
∞
x
n
=
A
\,\lim\limits_{n\to\infty}x_n=A
n→∞limxn=A;
step 2. 对递推关系
x
n
+
1
=
f
(
x
n
)
\,x_{n+1}=f(x_n)\,
xn+1=f(xn)两边取极限
n
→
∞
\,n\to\infty\,
n→∞可得
A
=
f
(
A
)
\,A=f(A)
A=f(A),解出
A
\,A
A.
注意:方程 A = f ( A ) \,A=f(A)\, A=f(A)解出的极限值中可能包含增根,注意结合已知条件进行检验.
证明选择:
数列单调:单调有界数列收敛定理.
不单调:压缩映射定理.
15 重要结论
(1) lim n → ∞ a n = a ⇒ lim n → ∞ ∣ a n ∣ = ∣ a ∣ . \lim\limits_{n \to \infty}{a_n=a} \Rightarrow \lim\limits_{n \to \infty}{|a_n|=|a|}. n→∞liman=a⇒n→∞lim∣an∣=∣a∣.
(2) lim n → ∞ a n = 0 ⇔ lim n → ∞ ∣ a n ∣ = 0 . \lim\limits_{n \to \infty}{a_n=0} \Leftrightarrow \lim\limits_{n \to \infty}{|a_n|=0}. n→∞liman=0⇔n→∞lim∣an∣=0.
这是使用夹逼准则的常用结论. 证明一个数列极限为0,可以转化为证明其绝对值的极限为0. 因为 ∣ a n ∣ \,|a_n|\, ∣an∣天然 ⩾ 0 \,\geqslant 0 ⩾0,所以用夹逼准则证明 ∣ a n ∣ \,|a_n|\, ∣an∣极限存在时,只需再证明 ∣ a n ∣ ⩽ 0 \,|a_n|\leqslant0\, ∣an∣⩽0即可.
(3) 若数列 { a n } \,\{a_n\}\, {an}收敛,则其任何子列 { a n k } \,\{a_{n_k}\}\, {ank}也收敛,且 lim n → ∞ a n = lim k → ∞ a n k \,\lim\limits_{n \to \infty}{a_{n}}=\lim\limits_{k \to \infty}{a_{n_k}}\, n→∞liman=k→∞limank.
逆否命题:只要原数列存在任一发散的子列,则原数列必定发散. 或存在两个子列收敛于不同的极限,则原数列必定发散.
(4) 子列完整覆盖.
lim
n
→
∞
a
n
∃
⇔
lim
n
→
∞
a
2
n
\lim\limits_{n \to \infty}{a_{n}}\exist \Leftrightarrow \lim\limits_{n \to \infty}{a_{2n}}
n→∞liman∃⇔n→∞lima2n、
lim
n
→
∞
a
2
n
−
1
\lim\limits_{n \to \infty}{a_{2n-1}}\,
n→∞lima2n−1存在且相等,反之不成立.
lim
n
→
∞
a
n
∃
⇔
lim
n
→
∞
a
3
n
\lim\limits_{n \to \infty}{a_{n}}\exist \Leftrightarrow \lim\limits_{n \to \infty}{a_{3n}}
n→∞liman∃⇔n→∞lima3n、
lim
n
→
∞
a
3
n
+
1
\lim\limits_{n \to \infty}{a_{3n+1}}\,
n→∞lima3n+1、
lim
n
→
∞
a
3
n
+
2
\lim\limits_{n \to \infty}{a_{3n+2}}\,
n→∞lima3n+2存在且相等.
即需保证各子列合在一起能构成完整的原数列,才有类似于上方的充要条件.
(5) 关于有界:
设 lim x → ⋅ f ( x ) ∃ \,\lim\limits_{x\to\cdot}f(x)\exist x→⋅limf(x)∃,则当 x → ⋅ \,x\to\cdot\, x→⋅时, f ( x ) f(x)\, f(x)有界.
设 f ( x ) \,f(x)\, f(x)在 [ a , b ] \,[a,b]\, [a,b]上连续,则 f ( x ) \,f(x)\, f(x)在 [ a , b ] \,[a,b]\, [a,b]上有界.
有界函数与有界函数的和、差、积还是有界函数.
若 f ′ ( x ) \,f'(x)\, f′(x)在有限区间 ( a , b ) \,(a,b)\, (a,b)有界,则 f ( x ) \,f(x)\, f(x)在 ( a , b ) \,(a,b)\, (a,b)上有界. (无穷区间无此关系)
证明:设任一点 x 0 ∈ ( a , b ) \,x_0\in(a,b)\, x0∈(a,b),任意 x ∈ ( x 0 , b ) \,x\in(x_0,b) x∈(x0,b),
由拉格朗日中值定理, f ( x ) − f ( x 0 ) = f ′ ( ξ ) ( x − x 0 ) ( x 0 < ξ < x ) f(x)-f(x_0)=f'(\xi)(x-x_0)\;(x_0<\xi<x) f(x)−f(x0)=f′(ξ)(x−x0)(x0<ξ<x)
⇒ ∣ f ( x ) ∣ = ∣ f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) ∣ ⩽ ∣ f ( x 0 ) ∣ + ∣ f ′ ( ξ ) ( x − x 0 ) ∣ \Rightarrow|f(x)|=|f(x_0)+f'(\xi)(x-x_0)|\leqslant|f(x_0)|+|f'(\xi)(x-x_0)| ⇒∣f(x)∣=∣f(x0)+f′(ξ)(x−x0)∣⩽∣f(x0)∣+∣f′(ξ)(x−x0)∣
因为 f ′ ( x ) \,f'(x)\, f′(x)在 ( a , b ) \,(a,b)\, (a,b)上有界,所以 ∣ f ( x 0 ) ∣ + ∣ f ′ ( ξ ) ( x − x 0 ) ∣ ⩽ ∣ f ( x 0 ) + K ( b − a ) ∣ |f(x_0)|+|f'(\xi)(x-x_0)|\leqslant |f(x_0)+K(b-a)| ∣f(x0)∣+∣f′(ξ)(x−x0)∣⩽∣f(x0)+K(b−a)∣,( K > 0 K>0 K>0).
令 M = ∣ f ( x 0 ) + K ( b − a ) ∣ \,M=|f(x_0)+K(b-a)| M=∣f(x0)+K(b−a)∣,则 ∣ f ( x ) ∣ ⩽ M \,|f(x)|\leqslant M ∣f(x)∣⩽M.
Part 2 - 连续
1 连续的条件
(1) 某点连续.
lim
x
→
x
0
f
(
x
)
=
f
(
x
0
)
⇔
f
(
x
0
−
0
)
=
f
(
x
0
+
0
)
=
f
(
x
0
)
\color{Purple}\lim\limits_{x\to x_0}f(x)=f(x_0)\Leftrightarrow f(x_0-0)=f(x_0+0)=f(x_0)
x→x0limf(x)=f(x0)⇔f(x0−0)=f(x0+0)=f(x0)
某点连续,可以推出 f ( x ) \,f(x)\, f(x)在该点邻域内有定义,但不能推出 f ( x ) \,f(x)\, f(x)在该点邻域内连续.
另外, f ( x 0 − 0 ) f(x_0-0)\, f(x0−0)和 f ( x 0 + 0 ) \,f(x_0+0)\, f(x0+0)是 x 0 \,x_0\, x0点左极限和右极限的简单记法,按照定义其含义为:
f ( x 0 − 0 ) = lim x → x 0 − f ( x ) , f ( x 0 + 0 ) = lim x → x 0 + f ( x ) f(x_0-0)=\lim_{x\to x_0^-}f(x),f(x_0+0)=\lim_{x\to x_0^+}f(x) f(x0−0)=x→x0−limf(x),f(x0+0)=x→x0+limf(x)
左右极限相等,保证该点极限存在,左右极限相等且等于该点函数值,该点才连续.
在同济七版教材中采用记法: f ( x 0 − ) f(x_0^-) f(x0−)、 f ( x 0 + ) f(x_0^+) f(x0+). 以上记法均可使用.
(2) 某邻域内连续.
f ( x ) f(x)\, f(x)在 x 0 \,x_0\, x0的某邻域 U δ ( x 0 ) \,U_\delta(x_0)\, Uδ(x0)内处处连续.
某邻域内连续,可以推出 f ( x ) \,f(x)\, f(x)在该邻域内有定义和连续,但不能推出邻域内可导.
(3) 某去心邻域内连续.
f ( x ) f(x)\, f(x)在 x 0 \,x_0\, x0的某去心邻域 U ˚ δ ( x 0 ) \,\mathring{U}_\delta(x_0)\, U˚δ(x0)内处处连续.
某去心邻域内连续,可以推出 f ( x ) \,f(x)\, f(x)在该去心邻域内有定义和连续,但不能推出去心邻域内可导. 且 x 0 \,x_0\, x0处极限不一定存在.
2 间断点
间断点分类
(1) 第一类间断点:
f
(
x
0
−
0
)
、
f
(
x
0
+
0
)
f(x_0-0)、f(x_0+0)\,
f(x0−0)、f(x0+0)都存在.
条件 | 进一步分为 |
---|---|
f ( x 0 − 0 ) = f ( x 0 + 0 ) ≠ f ( x 0 ) f(x_0-0)=f(x_0+0)\neq f(x_0) f(x0−0)=f(x0+0)=f(x0) | 可去间断点 |
f ( x 0 − 0 ) ≠ f ( x 0 + 0 ) f(x_0-0)\neq f(x_0+0) f(x0−0)=f(x0+0) | 跳跃间断点 |
(2) 第二类间断点:
f
(
x
0
−
0
)
、
f
(
x
0
+
0
)
f(x_0-0)、f(x_0+0)\,
f(x0−0)、f(x0+0)至少一个不存在,可进一步分为无穷间断点和振荡间断点.
间断点讨论思路
解题步骤:
(1) 找出所有间断点:
x
=
x
1
,
x
=
x
2
,
.
.
.
x=x_1,x=x_2,...
x=x1,x=x2,... 是
f
(
x
)
\,f(x)\,
f(x)的间断点;
(2) 对于每一个间断点
x
i
\,x_i
xi:
先判断该点的左右极限是否存在.
若左右极限任一不存在,
则该间断点为第二类间断点(无穷间断点或振荡间断点).
若左右极限存在,判断左右极限的关系.
f
(
x
0
−
0
)
=
f
(
x
0
+
0
)
f(x_0-0)=f(x_0+0)
f(x0−0)=f(x0+0),为可去间断点.
f
(
x
0
−
0
)
≠
f
(
x
0
+
0
)
f(x_0-0)\neq f(x_0+0)
f(x0−0)=f(x0+0),为条约间断点.
识别间断点的方法:
主要有以下两种情况:
case 1. 无定义点.
(1) 分式的分母为 0 \,0 0.
(2) 三角函数如 sin x \,\sin{x} sinx、 sin π x \sin{\pi x}\, sinπx等出现在分母可以得到一系列间断点.
(3) ? ∣ x − a ∣ \frac{?}{|x-a|} ∣x−a∣?、 ln ∣ x ∣ \text{ln}|x|\, ln∣x∣等分左右极限检查.
(4) f ( x ) f(x)\, f(x)含 a ? x − b \,a^{\frac{?}{x-b}}\, ax−b?或 a ? b − x \,a^{\frac{?}{b-x}} ab−x?,当 x → b \,x \to b\, x→b时,分左右极限检查.
(5) arctan a x \arctan \frac{a}{x} arctanxa分左右.
(6) [ x ] [x] [x], x → n x\to n x→n.
case 2. 分段函数的分段点.
3 连续的性质
基本性质
(1) 在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数.
(2) 连续函数的复合函数仍然是连续函数.
(3) 连续单调递增(递减)函数的反函数,也连续单调递增(递减).
最值 & 有界
设 f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)∈C[a,b],则 f ( x ) \,f(x)\, f(x)在 [ a , b ] \,[a, b]\, [a,b]上必有界,可以取得最大值 M \,M\, M和最小值 m \,m m.
注意: f ( x ) ∈ C [ a , b ] f(x) \in C[a, b]\, f(x)∈C[a,b]表示 f ( x ) \,f(x)\, f(x)在闭区间 [ a , b ] \,[a, b]\, [a,b]连续. 考试时不能直接这么写,需要写明!
f ( x ) \,f(x)\, f(x)在开区间 ( a , b ) \,(a,b)\, (a,b)内连续,不能推出 f ( x ) \,f(x)\, f(x)在 ( a , b ) \,(a,b)\, (a,b)内有界!除非 f ( x ) \,f(x)\, f(x)还同时满足: f ( a + 0 ) \,f(a+0) f(a+0)、 f ( b − 0 ) f(b-0)\, f(b−0)存在,则 f ( x ) \,f(x)\, f(x)在 ( a , b ) \,(a,b)\, (a,b)内有界.
零点定理
设 f ( x ) ∈ C [ a , b ] \,f(x) \in C[a, b] f(x)∈C[a,b],且 f ( a ) ⋅ f ( b ) < 0 \,f(a)\cdot f(b)<0 f(a)⋅f(b)<0,则 ∃ c ∈ ( a , b ) \,\exist\,c \in (a, b) ∃c∈(a,b),使 f ( c ) = 0 \,f(c) = 0 f(c)=0.
推广零点定理:
设 f ( x ) ∈ C [ a , + ∞ ) \,f(x) \in C[a, +\infty) f(x)∈C[a,+∞),且 f ( a ) ⋅ lim x → + ∞ f ( x ) < 0 \,f(a)\cdot \lim\limits_{x \to +\infty}f(x)<0 f(a)⋅x→+∞limf(x)<0,则 ∃ c ∈ ( a , + ∞ ) \,\exist\,c \in (a, +\infty) ∃c∈(a,+∞),使 f ( c ) = 0 f(c) = 0 f(c)=0.
题目特征: f ( x ) ∈ C [ a , b ] f(x) \in C[a, b] f(x)∈C[a,b], ∃ ξ ∈ ( a , b ) \exist\,\xi \in(a, b) ∃ξ∈(a,b) (开区间).
零点定理在证明题中的应用见:中值定理
介值定理
设 f ( x ) ∈ C [ a , b ] \,f(x) \in C[a, b] f(x)∈C[a,b], ∀ η ∈ [ m , M ] \forall\, \eta \in [m, M] ∀η∈[m,M], ∃ ξ ∈ [ a , b ] \exist\,\xi\in[a,b] ∃ξ∈[a,b],使 f ( ξ ) = η \,f(\xi)=\eta f(ξ)=η.
题目特征:
f
(
x
)
∈
C
[
a
,
b
]
f(x) \in C[a, b]
f(x)∈C[a,b],
i
f
{
ξ
∈
[
a
,
b
]
;
函
数
值
之
和
.
if\begin{cases} \xi \in [a, b];\\ 函数值之和.\\ \end{cases}
if{ξ∈[a,b];函数值之和.
例: f ( x ) ∈ C [ 0 , 1 ] f(x) \in C[0, 1] f(x)∈C[0,1], f ( 0 ) + 2 f ( 1 ) = 3 f(0)+2f(1)=3 f(0)+2f(1)=3,证 ∃ ξ ∈ [ a , b ] \,\exist \xi \in[a, b] ∃ξ∈[a,b],使 f ( ξ ) = 1 f(\xi)=1 f(ξ)=1.
介值定理在证明题中的应用见:中值定理