高数考研归纳 - 积分学 - 不定积分与定积分

点击此处查看高数其他板块总结

文章目录

Part 1 不定积分

记忆内容

1 基本公式

  1. 最基本的:
∫ k d x = k x + C \int k\text{d}x=kx+C kdx=kx+C ∫ x a d x = 1 a + 1 x a + 1 + C      ( a ≠ − 1 ) , ∫ d x x = ln ∣ x ∣ + C      ( x ≠ 0 ) \int x^a\text{d}x=\frac{1}{a+1}x^{a+1}+C\;\;(a\neq-1),\int\frac{\text{d}x}{x}=\text{ln}|x|+C\;\;(x\neq 0) xadx=a+11xa+1+C(a=1)xdx=lnx+C(x=0) ∫ a x d x = a x ln a + C      ( a > 0 , a ≠ 1 ) , ∫ e x d x = e x + C \int a^x\text{d}x=\frac{a^x}{\text{ln}a}+C\;\;(a>0,a\neq1),\int e^x\text{d}x=e^x+C axdx=lnaax+C(a>0,a=1)exdx=ex+C ∫ sin x d x = − cos x + C , ∫ cos x d x = sin x + C \int \text{sin}x\text{d}x=-\text{cos}x+C,\int \text{cos}x\text{d}x=\text{sin}x+C sinxdx=cosx+Ccosxdx=sinx+C ∫ sec 2 x d x = tan x + C , ∫ csc 2 x d x = − cot x + C \int \text{sec}^2x\text{d}x=\text{tan}x+C,\int \text{csc}^2x\text{d}x=-\text{cot}x+C sec2xdx=tanx+Ccsc2xdx=cotx+C ∫ sec x ⋅ tan x d x = sec x + C , ∫ csc x ⋅ cot x d x = − csc x + C \int \text{sec}x\cdot\text{tan}x\text{d}x=\text{sec}x+C,\int \text{csc}x\cdot\text{cot}x\text{d}x=-\text{csc}x+C secxtanxdx=secx+Ccscxcotxdx=cscx+C ∫ d x 1 − x 2 d x = arcsin x + C \int \frac{\text{d}x}{\sqrt{1-x^2}}{d}x=\text{arcsin}x+C 1x2 dxdx=arcsinx+C ∫ 1 1 + x 2 d x = arctan x + C \int \frac{1}{1+x^2}{d}x=\text{arctan}x+C 1+x21dx=arctanx+C

  2. 需要重点记忆:
∫ tan x d x = − ln ∣ cos x ∣ + C , ∫ cot x d x = ln ∣ sin x ∣ + C \int \text{tan}x\text{d}x=-\text{ln}\bigg|\text{cos}x\bigg|+C,\int \text{cot}x\text{d}x=\text{ln}\bigg|\text{sin}x\bigg|+C tanxdx=lncosx+Ccotxdx=lnsinx+C ∫ sec x d x = ln ∣ sec x + tan x ∣ + C , ∫ csc x d x = ln ∣ csc x − cot x ∣ + C \int \text{sec}x\text{d}x=\text{ln}\bigg|\text{sec}x+\text{tan}x\bigg|+C,\int \text{csc}x\text{d}x=\text{ln}\bigg|\text{csc}x-\text{cot}x\bigg|+C secxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+C ∫ d x a 2 − x 2 = arcsin x a + C      ( a > 0 ) \int \frac{\text{d}x}{\sqrt{a^2-x^2}}=\text{arcsin}\frac{x}{a}+C\;\;(a>0) a2x2 dx=arcsinax+C(a>0) ∫ d x x 2 − a 2 = ln ∣ x + x 2 − a 2 ∣ + C , ∫ d x x 2 + a 2 = ln ( x + x 2 + a 2 ) + C \int \frac{\text{d}x}{\sqrt{x^2-a^2}}=\text{ln}\bigg|x+\sqrt{x^2-a^2}\bigg|+C,\int \frac{\text{d}x}{\sqrt{x^2+a^2}}=\text{ln}\big(x+\sqrt{x^2+a^2}\big)+C x2a2 dx=lnx+x2a2 +Cx2+a2 dx=ln(x+x2+a2 )+C ∫ d x x 2 + a 2 = 1 a arctan x a + C      ( a ≠ 0 ) \int \frac{\text{d}x}{x^2+a^2}=\frac{1}{a}\text{arctan}\frac{x}{a}+C\;\;(a\neq 0) x2+a2dx=a1arctanax+C(a=0) ∫ d x x 2 − a 2 = 1 2 a ln ∣ x − a x + a ∣ + C \int \frac{\text{d}x}{x^2-a^2}=\frac{1}{2a}\text{ln}\bigg|\frac{x-a}{x+a}\bigg|+C x2a2dx=2a1lnx+axa+C ∫ a 2 − x 2 d x = a 2 2 arcsin x a + x 2 a 2 − x 2 + C \int \sqrt{a^2-x^2}{\text{d}x}=\frac{a^2}{2}\text{arcsin}\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C a2x2 dx=2a2arcsinax+2xa2x2 +C ∫ e x [ f ( x ) + f ′ ( x ) ] d x = e x f ( x ) + C \int e^x[f(x)+f'(x)]\text{d}x=e^xf(x)+C ex[f(x)+f(x)]dx=exf(x)+C

2 基本积分法

(一) 换元积分法
第一类换元积分法

  将一个   x   \,x\, x的复杂表达式用一个   t   \,t\, t进行替换求积分,最后把   x   \,x\, x代回去.

  基本手法 (应该极其熟练):
∫ x n − 1 f ( a x n + b ) d x = 1 n a ∫ f ( a x n + b ) d ( a x n + b )      ( a ≠ 0 ) \int x^{n-1}f(ax^n+b)\text{d}x=\frac{1}{na}\int f(ax^n+b)\text{d}(ax^{n}+b)\;\;(a\neq 0) xn1f(axn+b)dx=na1f(axn+b)d(axn+b)(a=0) ∫ f ( x ) x d x = 2 ∫ f ( x ) 2 x d x = 2 ∫ f ( x ) d ( x ) \int\frac{f(x)}{\sqrt{x}}\text{d}x=2\int\frac{f(x)}{2\sqrt{x}}\text{d}x=2\int f(x)\text{d}(\sqrt{x}) x f(x)dx=22x f(x)dx=2f(x)d(x ) ∫ 1 x 2 d x = − ∫ 1 x d x \int\frac{1}{x^2}\text{d}x=-\int\frac{1}{x}\text{d}x x21dx=x1dx ∫ f ( x ) x d x = ∫ f ( x ) d ( ln x ) \int \frac{f(x)}{x}\text{d}x=\int f(x)\text{d}(\text{ln}x) xf(x)dx=f(x)d(lnx) ∫ e x f ( x ) d x = ∫ f ( x ) d ( e x ) \int e^xf(x)\text{d}x=\int f(x)\text{d}(e^x) exf(x)dx=f(x)d(ex) ∫ ( 1 + x ) e x f ( x ) d x = ∫ f ( x ) d ( x e x ) \int (1+x)e^xf(x)\text{d}x=\int f(x)\text{d}(xe^x) (1+x)exf(x)dx=f(x)d(xex) ∫ ( 1 + ln x ) f ( x ) d x = ∫ f ( x ) d ( x ln x ) \int(1+\text{ln}x)f(x)\text{d}x=\int f(x)\text{d}(x\text{ln}x) (1+lnx)f(x)dx=f(x)d(xlnx) ∫ ( 1 − ln x ) f ( x ) d x = ∫ ( 1 + ln x ) f ( x ) x 2 ⋅ x 2 d x = ∫ x 2 f ( x ) d ( ln x x ) \int(1-\text{ln}x)f(x)\text{d}x=\int\frac{(1+\text{ln}x)f(x)}{x^2}\cdot x^2\text{d}x=\int x^2f(x)\text{d}(\frac{\text{ln}x}{x}) (1lnx)f(x)dx=x2(1+lnx)f(x)x2dx=x2f(x)d(xlnx) ∫ f ( x ) sin x d x = − ∫ f ( x ) d ( cos x ) , ∫ f ( x ) cos x d x = ∫ f ( x ) d ( sin x ) \int f(x)\text{sin}x\text{d}x=-\int f(x)\text{d}(\text{cos}x),\int f(x)\text{cos}x\text{d}x=\int f(x)\text{d}(\text{sin}x) f(x)sinxdx=f(x)d(cosx)f(x)cosxdx=f(x)d(sinx) ∫ f ( x ) sec 2 x d x = ∫ f ( x ) d ( tan x ) , ∫ f ( x ) csc 2 x d x = − ∫ f ( x ) d ( cot x ) \int f(x)\text{sec}^2x\text{d}x=\int f(x)\text{d}(\text{tan}x),\int f(x)\text{csc}^2x\text{d}x=-\int f(x)\text{d}(\text{cot}x) f(x)sec2xdx=f(x)d(tanx)f(x)csc2xdx=f(x)d(cotx) ∫ f ( x ) sec x ⋅ tan x d x = ∫ f ( x ) d ( sec x ) , ∫ f ( x ) csc x ⋅ cot x d x = − ∫ f ( x ) d ( csc x ) \int f(x)\text{sec}x\cdot\text{tan}x\text{d}x=\int f(x)\text{d}(\text{sec}x),\int f(x)\text{csc}x\cdot\text{cot}x\text{d}x=-\int f(x)\text{d}(\text{csc}x) f(x)secxtanxdx=f(x)d(secx)f(x)cscxcotxdx=f(x)d(cscx)

∫ f ( x ) 1 − x 2 d x = ∫ f ( x ) d ( arcsin x ) \int\frac{f(x)}{\sqrt{1-x^2}}\text{d}x=\int f(x)\text{d}(\text{arcsin}x) 1x2 f(x)dx=f(x)d(arcsinx) ∫ f ( x ) 1 + x 2 d x = ∫ f ( x ) d ( arctan x ) \int\frac{f(x)}{1+x^2}\text{d}x=\int f(x)\text{d}(\text{arctan}x) 1+x2f(x)dx=f(x)d(arctanx) ∫ 1 x ln x f ( x ) d x = ∫ f ( x ) d ( lnln x ) \int\frac{1}{x\text{ln}x}f(x)\text{d}x=\int f(x)\text{d}(\text{ln}\text{ln}x) xlnx1f(x)dx=f(x)d(lnlnx) ∫ 1 x ln x ⋅ lnln x f ( x ) d x = ∫ f ( x ) d ( lnlnln x ) \int\frac{1}{x\text{ln}x\cdot\text{lnln}x}f(x)\text{d}x=\int f(x)\text{d}(\text{ln}\text{ln}\text{ln}x) xlnxlnlnx1f(x)dx=f(x)d(lnlnlnx) ∫ e sin x cos x f ( x ) d x = ∫ f ( x ) d ( e sin x ) \int e^{\text{sin}x}\text{cos}xf(x)\text{d}x=\int f(x)\text{d}(e^{\text{sin}x}) esinxcosxf(x)dx=f(x)d(esinx)

    配方法 (通常不是最简单的方法):
∫ d x x ( 4 − x ) = ∫ d ( x − 2 ) 2 2 − ( x − 2 ) 2 \int\frac{\text{d}x}{\sqrt{x(4-x)}}=\int\frac{\text{d}(x-2)}{\sqrt{2^2-(x-2)^2}} x(4x) dx=22(x2)2 d(x2)

  高级手法 (以下方法不便归纳,用法也很灵活,熟悉即可)

    (1) 分母出现   1 + x 4 {\color{Blue} \,1+x^4} 1+x4
( x ± 1 x ) 2 = x 2 + 1 x 2 ± 2 {\color{Purple} (x\pm\frac{1}{x})^2=x^2+\frac{1}{x^2}\pm2} (x±x1)2=x2+x21±2 ∫ x 2 + 1 x 4 + 1 d x = ∫ 1 + 1 x 2 x 2 + 1 x 2 d x = ∫ d ( x − 1 x ) ( x − 1 x ) 2 + ( 2 ) 2 \int\frac{x^2+1}{x^4+1}\text{d}x=\int\frac{1+\frac{1}{x^2}}{x^2+\frac{1}{x^2}}\text{d}x=\int\frac{\text{d}(x-\frac{1}{x})}{(x-\frac{1}{x})^2+(\sqrt{2})^2} x4+1x2+1dx=x2+x211+x21dx=(xx1)2+(2 )2d(xx1) ∫ x 2 − 1 1 + x 4 d x = ∫ 1 − 1 x 2 1 x 2 + x 2 d x = ∫ d ( x + 1 x ) ( x + 1 x ) 2 − ( 2 ) 2 \int\frac{x^2-1}{1+x^4}\text{d}x=\int\frac{1-\frac{1}{x^2}}{\frac{1}{x^2}+x^2}\text{d}x=\int\frac{\text{d}(x+\frac{1}{x})}{(x+\frac{1}{x})^2-(\sqrt{2})^2} 1+x4x21dx=x21+x21x21dx=(x+x1)2(2 )2d(x+x1) ∫ 1 1 + x 4 d x = 1 2 ( ∫ x 2 + 1 1 + x 4 d x − ∫ x 2 − 1 1 + x 4 d x ) \int\frac{1}{1+x^4}\text{d}x=\frac{1}{2}\bigg(\int\frac{x^2+1}{1+x^4}\text{d}x-\int\frac{x^2-1}{1+x^4}\text{d}x\bigg) 1+x41dx=21(1+x4x2+1dx1+x4x21dx)

    (2) 几种重要 凑 齐 {\color{Blue}凑齐} 的思路:

      a. 凑分母
∫ x e x ( x + 1 ) 2 d x = ∫ ( x + 1 ) − 1 ( x + 1 ) 2 e x d x = ∫ [ 1 x + 1 − 1 ( x + 1 ) 2 ] e x = e x x + 1 + C \int\frac{xe^x}{(x+1)^2}\text{d}x=\int\frac{(x+1)-1}{(x+1)^2}e^x\text{d}x=\int\bigg[\frac{1}{x+1}-\frac{1}{(x+1)^2}\bigg]e^x=\frac{e^x}{x+1}+C (x+1)2xexdx=(x+1)2(x+1)1exdx=[x+11(x+1)21]ex=x+1ex+C ∫ x 3 1 + x 2 d x = ∫ x 3 + x − x 1 + x 2 d x \int\frac{x^3}{\sqrt{1+x^2}}\text{d}x=\int\frac{x^3+x-x}{\sqrt{1+x^2}}\text{d}x 1+x2 x3dx=1+x2 x3+xxdx

      b. 凑分母的导数
∫ x − 2 x 2 + x + 2 d x = 1 2 ∫ 2 x + 1 − 5 x 2 + x + 2 d x = 1 2 ∫ d ( x 2 + x + 2 ) x 2 + x + 2 − 5 2 ∫ d ( x + 1 2 ) ( x + 1 2 ) 2 + 7 4 \int\frac{x-2}{x^2+x+2}\text{d}x=\frac{1}{2}\int\frac{2x+1-5}{x^2+x+2}\text{d}x=\frac{1}{2}\int\frac{\text{d}(x^2+x+2)}{x^2+x+2}-\frac{5}{2}\int\frac{\text{d}(x+\frac{1}{2})}{(x+\frac{1}{2})^2+\frac{7}{4}} x2+x+2x2dx=21x2+x+22x+15dx=21x2+x+2d(x2+x+2)25(x+21)2+47d(x+21)

      c. 凑分母的次数
∫ d x x ( x 4 + 2 ) = ∫ x 3 x 4 ( x 4 + 2 ) = 1 4 ∫ d ( x 4 + 2 ) x 4 ( x 4 + 2 ) \int\frac{\text{d}x}{x(x^4+2)}=\int\frac{x^3}{x^4(x^4+2)}=\frac{1}{4}\int\frac{\text{d}(x^4+2)}{x^4(x^4+2)} x(x4+2)dx=x4(x4+2)x3=41x4(x4+2)d(x4+2) ∫ d x x ( 1 + x 7 ) = ∫ x 6 x 7 ( 1 + x 7 ) = 1 7 ∫ d ( x 7 ) x 7 ( 1 + x 7 ) \int\frac{\text{d}x}{x(1+x^7)}=\int\frac{x^6}{x^7(1+x^7)}=\frac{1}{7}\int\frac{\text{d}(x^7)}{x^7(1+x^7)} x(1+x7)dx=x7(1+x7)x6=71x7(1+x7)d(x7)

    (3) 关于   e x   {\,\color{Blue}e^x\,} ex
      可以考虑提一项   e Δ   \,e^\Delta\, eΔ出来:
∫ d x e x − 1 = ∫ d x e x 2 1 − e − x = − 2 ∫ d ( e − x 2 ) 1 − ( e − x 2 2 ) 2 \int\frac{\text{d}x}{\sqrt{e^x-1}}=\int\frac{\text{d}x}{e^{\frac{x}{2}}\sqrt{1-e^{-x}}}=-2\int\frac{\text{d}(e^{-\frac{x}{2}})}{\sqrt{1-(e^{-\frac{x^2}{2}})^2}} ex1 dx=e2x1ex dx=21(e2x2)2 d(e2x)

      与(1)类似的思路: ( e x ± e − x ) 2 = e 2 x + e − 2 x ± 2   {\color{Purple} (e^x\pm e^{-x})^2=e^{2x}+e^{-2x}\pm 2}\, (ex±ex)2=e2x+e2x±2
∫ e 3 x + e x e 4 x + e 2 x + 1 d x = ∫ e x + e − x e 2 x + e − 2 x + 1 d x \int \frac{e^{3x}+e^x}{e^{4x}+e^{2x}+1}\text{d}x=\int\frac{e^{x}+e^{-x}}{e^{2x}+e^{-2x}+1}\text{d}x e4x+e2x+1e3x+exdx=e2x+e2x+1ex+exdx

    (4) 连 续 换 元   {\color{Blue}连续换元\,} (换元的基础上再换元)

∫ x sin x cos 3 x d x = − ∫ x d ( cos x ) cos 3 x = 1 2 ∫ x d ( 1 cos 2 x ) \int\frac{x\text{sin}{x}}{\text{cos}^3x}\text{d}x={\color{Purple} -\int\frac{x \text{d}(\text{cos}x)}{\text{cos}^3x}=\frac{1}{2}\int xd\big(\frac{1}{\text{cos}^2x}\big)} cos3xxsinxdx=cos3xxd(cosx)=21xd(cos2x1)

第二类换元积分法

  使用范围狭窄. 思路与第一类换元积分法正好相反,是将一个   x   \,x\, x替换为   t   \,t\, t的表达式. 有以下三种使用情形:

(1) 无理函数   ⇒   \,\Rightarrow\, 有理函数

  主要是针对处理不了的   f ( x ) \,\sqrt{f(x)} f(x) ,最后得到   t   \,t\, t的积分结果后,直接把   x   \,x\, x代回即可.

  例:
∫ d x 1 + x = x = t 2 ∫ t 1 + t d t \int\frac{\text{d}x}{1+\sqrt{x}} \xlongequal{\sqrt{x}=t}2\int\frac{t}{1+t}\text{d}t 1+x dxx =t 21+ttdt ∫ ln ( 1 + x + 1 x ) d x = x + 1 x = t ∫ ln ( 1 + t )   d ( 1 t 2 − 1 ) \int\text{ln}(1+\sqrt{\frac{x+1}{x}})\text{d}x\xlongequal{\sqrt{\frac{x+1}{x}}=t}\int\text{ln}(1+t)\,\text{d}(\frac{1}{t^2-1}) ln(1+xx+1 )dxxx+1 =t ln(1+t)d(t211) ∫ d x x + x 3 = x = t 6 6 ∫ t 3 t + 1 d t \int\frac{\text{d}x}{\sqrt{x}+\sqrt[3]{x}}\xlongequal{x=t^6}6\int\frac{t^3}{t+1}\text{d}t x +3x dxx=t6 6t+1t3dt ∫ 1 x 1 + x 1 − x d x = 1 + x 1 − x = t . . . \int\frac{1}{x}\sqrt{\frac{1+x}{1-x}}\text{d}x\xlongequal{\sqrt{\frac{1+x}{1-x}}=t}... x11x1+x dx1x1+x =t ...

(2) 三角代换

  针对被积函数含有处理不了的平方差或平方和. 读者需尤其注意   sec   \,\text{sec}\, sec代换必须要分类讨论.

  重要手法

    (1) 分子或分母出现   a 2 − x 2 \,\color{Blue}\sqrt{a^2-x^2} a2x2 ( a > 0 a>0 a>0)

      令   x = a ⋅ sin t \,\color{Purple}x=a\cdot\text{sin}t x=asint t ∈ ( − π 2 , π 2 ) \color{Purple}t\in(-\frac{\pi}{2},\frac{\pi}{2}) t(2π,2π).

      则   t = arcsin x a \,t=\text{arcsin}\frac{x}{a} t=arcsinax a 2 − x 2 = a ∣ cos t ∣ = a cos t \sqrt{a^2-x^2}=a|{\text{cos}t}|=a\text{cos}t a2x2 =acost=acost.

  请读者尤其关注三角代换中   t   \,t\, t的取值范围. 在正式计算过程中,不可忽略此范围!此范围保证了以下三点:
     a ) a) a) 开区间保证   a 2 − x 2   \,\sqrt{a^2-x^2}\, a2x2 出现在分母时不为   0 \,0 0.
     b ) b) b) 确保了反三角函数( arcsin \text{arcsin} arcsin)的范围在定义域内: − 1 < x a < 1 -1<\frac{x}{a}<1 1<ax<1.
     c ) c) c) 最终代换的结果无需带绝对值.

    (2) 分子或分母出现   x 2 + a 2 \,\color{Blue}\sqrt{x^2+a^2} x2+a2 ( a > 0 a>0 a>0)

      令   x = a ⋅ tan t \,\color{Purple}x=a\cdot\text{tan}t x=atant t ∈ ( − π 2 , π 2 ) \color{Purple}t\in(-\frac{\pi}{2},\frac{\pi}{2}) t(2π,2π).

      则   t = arctan x a \,t=\text{arctan}\frac{x}{a} t=arctanax x 2 + a 2 = a ∣ sec t ∣ = a sec t \sqrt{x^2+a^2}=a|{\text{sec}t}|=a\text{sec}t x2+a2 =asect=asect.

   t   t\, t的范围保证了以下三点:
     a ) a) a) 开区间保证   x 2 + a 2   \,\sqrt{x^2+a^2}\, x2+a2 出现在分母时不为   0 \,0 0.
     b ) b) b) 确保了反三角函数( arctan \text{arctan} arctan)的范围在定义域内: − ∞ < x a < + ∞ -\infty<\frac{x}{a}<+\infty <ax<+.
     c ) c) c) 最终代换的结果无需带绝对值.

    (3) 分子或分母出现   x 2 − a 2 \,\color{Blue}\sqrt{x^2-a^2} x2a2 ( a > 0 a>0 a>0)

      令   x = a ⋅ sec t \,\color{Purple}x=a\cdot\text{sec}t x=asect t ∈ ( 0 , π 2 ) ∪ ( π 2 , π ) \color{Purple}t\in(0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi) t(0,2π)(2π,π).

      则   t = arccos a x \,t=\text{arccos}\frac{a}{x} t=arccosxa x 2 − a 2 = a ∣ tan t ∣ \sqrt{x^2-a^2}=a{\color{Red}|}{\text{tan}t}{\color{Red}|} x2a2 =atant. 此绝对值不可去掉!(除非题目说明   x > a \,x>a x>a)

   t   t\, t的范围保证了以下两点:
     a ) a) a) 开区间保证   x 2 − a 2   \,\sqrt{x^2-a^2}\, x2a2 出现在分母时不为   0 \,0 0.
     b ) b) b) 确保了反三角函数( arccos \text{arccos} arccos)的范围在定义域内: − 1 < a x < 1 -1<\frac{a}{x}<1 1<xa<1.

      由于绝对值不可去掉,之后就需要对   t   \,t\, t的两段区间进行分类讨论,得到综合的结果.

  得到   t   \,t\, t的积分结果后,需要通过画三角形分析得到   x = f ( t )   \,x=f(t)\, x=f(t)再代回.

(3) 倒代换

令   x = 1 t 令\,x=\frac{1}{t} x=t1

  一般遇到分母次数高,分子次数低的情况可以考虑使用倒代换.

∫ d x x 3 x 4 + 1 = x = 1 t ∫ − 1 t 2 1 t 3 ⋅ 1 + 1 t 4 d t = − ∫ t 3 t 4 + 1 d t \int\frac{\text{d}x}{x^3\sqrt{x^4+1}}\xlongequal{x=\frac{1}{t}}\int\frac{-\frac{1}{t^2}}{\frac{1}{t^3}\cdot\sqrt{1+\frac{1}{t^4}}}\text{d}t=-\int\frac{t^3}{\sqrt{t^4+1}}\text{d}t x3x4+1 dxx=t1 t311+t41 t21dt=t4+1 t3dt

(4) 简化高次项

  在被积函数最低次是一个高次项时,直接分析可能比较混乱,难以看清套路,可以考虑对其进行整体代换.

∫ x 14 ( x 5 + 1 ) 4 d x = 1 15 ∫ d ( x 15 ) ( x 5 + 1 ) 4 = x 5 = t 1 5 ∫ t 2 ( t + 1 ) 4 dt = 1 5 ∫ ( t + 1 ) 2 − 2 ( t + 1 ) + 1 ( t + 1 ) 4 d t \int\frac{x^{14}}{(x^5+1)^4}\text{d}x=\frac{1}{15}\int\frac{\text{d}(x^{15})}{(x^5+1)^4}\xlongequal{x^5=t}\frac{1}{5}\int\frac{t^2}{(t+1)^4}\text{dt}=\frac{1}{5}\int\frac{(t+1)^2-2(t+1)+1}{(t+1)^4}\text{d}t (x5+1)4x14dx=151(x5+1)4d(x15)x5=t 51(t+1)4t2dt=51(t+1)4(t+1)22(t+1)+1dt

(二) 分部积分法

∫ u d v = u v − ∫ v d u \int u\text{d}v=uv-\int v\text{d}u udv=uvvdu

  一定注意将不能处理的项放在左侧,能处理的项都清理干净全部放在右侧,再使用分部积分法. 强烈建议使用表格法计算这类积分,可大大提升计算速度!

  六种基本情况
    (1) ∫   \int\, 幂函数   ×   \,\times\, ×指数函数   d x \,\text{d}x dx
      将指数函数往后移:
∫ x 2 e x d x = ∫ x 2 d ( e x ) \int x^2e^x\text{d}x=\int{x^2}\text{d}(e^x) x2exdx=x2d(ex)

    (2) ∫   \int\, 幂函数   ×   \,\times\, ×对数函数   d x \,\text{d}x dx
      将幂函数往后移:
∫ x ln 2 x d x = 1 2 ∫ ln 2 x d ( x 2 ) \int x\text{ln}^2x\text{d}x=\frac{1}{2}\int\text{ln}^2x\text{d}({x^2}) xln2xdx=21ln2xd(x2)

    (3) ∫   \int\, 幂函数   ×   \,\times\, ×三角函数   d x \,\text{d}x dx
      将三角函数往后移:
∫ x 2 cos 2 x d x = 1 2 ∫ x 2 d ( sin 2 x ) \int x^2\text{cos}2x\text{d}x=\frac{1}{2}\int x^2\text{d}(\text{sin}2x) x2cos2xdx=21x2d(sin2x)

      若三角函数带平方,要先考虑降次.

    (4) ∫   \int\, 幂函数   ×   \,\times\, ×反三角函数   d x \,\text{d}x dx
      将幂函数往后移:
∫ x 2 arctan x d x = 1 3 ∫ arctan x d ( x 3 ) \int x^2\text{arctan}x\text{d}x=\frac{1}{3}\int\text{arctan}x\text{d}(x^3) x2arctanxdx=31arctanxd(x3)
      又比如下面这种直接使用分部积分即可:
∫ arcsin x ⋅ arccos x d x \int\text{arc}\text{sin}x\cdot\text{arc}\text{cos}x\text{d}x arcsinxarccosxdx

∫ ( arcsin x ) 2 d x \int(\text{arcsin}x)^2\text{d}x (arcsinx)2dx

    (5) ∫ e a x × { sin b x cos b x d x \int e^{ax}\times\begin{cases}\text{sin}bx\\\text{cos}bx\end{cases}\text{d}x eax×{sinbxcosbxdx
      这种情况会出现循环
      要先设   I =   \,I=\, I=原式   = . . . \,=... =...

    (6) ∫ { sec n x csc n x d x    \int \begin{cases}\text{sec}^nx\\\text{csc}^nx\end{cases}\text{d}x\,\, {secnxcscnxdx( n   n\, n为奇数).
      这种情况会出现循环
      要先设   I n =   \,I_n=\, In=原式   = . . . \,=... =...

  裂出无法求出积分的项
    在使用分部积分法的过程中,可能会裂出无法直接求出积分的项. 应该先不做处理,继续使用分部积分裂出的新项可能将其抵消掉.
    特征:通常含有   e a x \,\color{Purple}e^{ax} eax.

∫ x e x ( x + 1 ) 2 d x = ∫ ( x + 1 ) e x − e x ( x + 1 ) 2 d x \int\frac{xe^x}{(x+1)^2}\text{d}x=\int\frac{(x+1)e^x-e^x}{(x+1)^2}\text{d}x (x+1)2xexdx=(x+1)2(x+1)exexdx = ∫ e x x + 1 d x − ∫ e x ( x + 1 ) 2 d x ={\color{Blue}\int\frac{e^x}{x+1}\text{d}x}-\int\frac{e^x}{(x+1)^2}\text{d}x =x+1exdx(x+1)2exdx = ∫ e x x + 1 d x + ∫ e x d ( 1 x + 1 ) ={\color{Blue}\int\frac{e^x}{x+1}\text{d}x}+\int e^x\text{d}(\frac{1}{x+1}) =x+1exdx+exd(x+11) = ∫ e x x + 1 d x + e x x + 1 − ∫ e x x + 1 d x = e x x + 1 + C ={\color{Purple}\int\frac{e^x}{x+1}\text{d}x}+\frac{e^x}{x+1}-{\color{Purple}\int\frac{e^x}{x+1}\text{d}x}=\frac{e^x}{x+1}+C =x+1exdx+x+1exx+1exdx=x+1ex+C

  推广分布积分公式:
∫ u v ( n + 1 ) d x = u v ( n ) − u ′ v ( n − 1 ) + u ′ ′ v ( n − 2 ) − . . . + ( − 1 ) n u ( n ) v + ( − 1 ) ( n + 1 ) ∫ u ( n + 1 ) v d x \int uv^{(n+1)}\text{d}x=uv^{(n)}-u'v^{(n-1)}+u''v^{(n-2)}-...+(-1)^nu^{(n)}v+(-1)^{(n+1)}\int u^{(n+1)}v\text{d}x uv(n+1)dx=uv(n)uv(n1)+uv(n2)...+(1)nu(n)v+(1)(n+1)u(n+1)vdx

3 两类特殊函数的不定积分

(一) 有理函数不定积分

  定义
     P ( x ) 、 Q ( x )   P(x)、Q(x)\, P(x)Q(x)为多项式:
∫ R ( x ) d x , R ( x ) = P ( x ) Q ( x ) \int R(x)\text{d}x,R(x)=\frac{P(x)}{Q(x)} R(x)dxR(x)=Q(x)P(x)

     If      d e g ( P ) < d e g ( Q ) \text{If}\;\;deg(P)<deg(Q) Ifdeg(P)<deg(Q) R ( x )   R(x)\, R(x)为真分式;
     If      d e g ( P ) ⩾ d e g ( Q ) \text{If}\;\;deg(P)\geqslant deg(Q) Ifdeg(P)deg(Q) R ( x )   R(x)\, R(x)为假分式;
     ∫ R ( x ) d x   \int R(x)\text{d}x\, R(x)dx即为有理函数的不定积分.

   d e g ( X ) deg(X) deg(X),表示多项式   X   \,X\, X次数.

  求解步骤:拆分、求待定系数、求不定积分.

拆分方法

   A . A. A.   R ( x )   \,R(x)\, R(x)为假分式:
R ( x ) = 多 项 式 + 真 分 式 R(x)=多项式+真分式 R(x)=+

    使用凑项、多项式除法等方法进行拆分.

   B . B. B.   R ( x )   \,R(x)\, R(x)为真分式:
R ( x ) = 分 子 不 变 因 式 分 解 = ( 拆 分 成 的 ) 部 分 和 R(x)=\frac{分子不变}{因式分解}=(拆分成的)部分和 R(x)==()

    (1) 分母中含   ( x − a ) m   \,(x-a)^m\, (xa)m,则分解为:
A 1 x − a + A 2 ( x − a ) 2 + . . . + A m ( x − a ) m \frac{A_1}{x-a}+\frac{A_2}{(x-a)^2}+...+\frac{A_m}{(x-a)^m} xaA1+(xa)2A2+...+(xa)mAm

    (2) 分母中含   ( a x 2 + b x + c ) m    \,(ax^2+bx+c)^m\; (ax2+bx+c)m ( b 2 − 4 a c < 0 (b^2-4ac<0 (b24ac<0,即不可因式分解的因子 ) ) ),则分解为:
A 1 x + B 1 a x 2 + b x + c + A 2 x + B 2 ( a x 2 + b x + c ) 2 + . . . + A m x + B m ( a x 2 + b x + c ) m \frac{A_1x+B_1}{ax^2+bx+c}+\frac{A_2x+B_2}{(ax^2+bx+c)^2}+...+\frac{A_mx+B_m}{(ax^2+bx+c)^m} ax2+bx+cA1x+B1+(ax2+bx+c)2A2x+B2+...+(ax2+bx+c)mAmx+Bm

  下面列举一些实例:

  case 1:
    分母为   ( 2 x + 1 ) ( x − 1 ) \,(2x+1)(x-1) (2x+1)(x1),拆为:
A 2 x + 1 + B x − 1 \frac{A}{2x+1}+\frac{B}{x-1} 2x+1A+x1B

  case 2:
    分母为   x ( x − 1 ) 2 \,x(x-1)^2 x(x1)2,拆为:
A x + B x − 1 + C ( x − 1 ) 2 \frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2} xA+x1B+(x1)2C

    分母为   ( x + 1 ) 3 \,(x+1)^3 (x+1)3,拆为:
A x + 1 + B ( x + 1 ) 2 + C ( x + 1 ) 3 \frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{(x+1)^3} x+1A+(x+1)2B+(x+1)3C

  case 3:
    分母为   ( 2 x − 1 ) ( x 2 + 1 ) \,(2x-1)(x^2+1) (2x1)(x2+1),拆为:
A 2 x − 1 + B x + C x 2 + 1 \frac{A}{2x-1}+\frac{Bx+C}{x^2+1} 2x1A+x2+1Bx+C

    分母为   ( x − 2 ) ( x 2 + x + 3 ) \,(x-2)(x^2+x+3) (x2)(x2+x+3),拆为:
A x − 2 + B x + C x 2 + x + 3 \frac{A}{x-2}+\frac{Bx+C}{x^2+x+3} x2A+x2+x+3Bx+C

  复杂因式分解:试根、多项式除法.
  如: 1 x 3 − 3 x 2 + 2 \frac{1}{x^3-3x^2+2} x33x2+21
    (1) 试根,很容易观察到当   x = 1   \,x=1\, x=1时, x 3 − 3 x 2 + 2 = 0 {x^3-3x^2+2}=0 x33x2+2=0.
    (2) 多项式除法, x 3 − 3 x 2 + 2   {x^3-3x^2+2}\, x33x2+2除以   ( x − 1 ) \,(x-1) (x1),得   x 2 − 2 x − 2 \,x^2-2x-2 x22x2. 于是   x 3 − 3 x 2 + 2 = ( x − 1 ) ( x 2 − 2 x − 2 ) \,{x^3-3x^2+2}=(x-1)(x^2-2x-2) x33x2+2=(x1)(x22x2). 之后可进一步对   ( x 2 − 2 x − 2 )   \,(x^2-2x-2)\, (x22x2)进行因式分解.

求解待定系数的技巧

  求解待定系数的通法是列方程组求解,因此计算相对复杂. 对于不同的类型的因子,可以使用以下这些方法快速确定待定系数:

a. 留数法

  因子类型 ( x − a ) m (x-a)^m (xa)m.

  思路
    (1) 对于最高次幂:直接使用留数法.
    (2) 对于其他次幂:还需要结合其他方法 (两边求导特殊值法极限法).

  例. 1 ( x − 1 ) ( x − 2 ) ( x − 3 ) \frac{1}{(x-1)(x-2)(x-3)} (x1)(x2)(x3)1

  思路:
1 ( x − 1 ) ( x − 2 ) ( x − 3 ) = a x − 1 + b x − 2 + c x − 3 \frac{1}{(x-1)(x-2)(x-3)}=\frac{a}{x-1}+\frac{b}{x-2}+\frac{c}{x-3} (x1)(x2)(x3)1=x1a+x2b+x3c

  两边同乘   ( x − 1 )   \,(x-1)\, (x1):
1 ( x − 2 ) ( x − 3 ) = a + ( b x − 2 + c x − 3 ) ( x − 1 ) \frac{1}{(x-2)(x-3)}=a+\bigg(\frac{b}{x-2}+\frac{c}{x-3}\bigg)(x-1) (x2)(x3)1=a+(x2b+x3c)(x1)

  令   x = 1   \,x=1\, x=1 a = 1 2 a=\frac{1}{2} a=21. 同样的方法可以求出   b = − 1 ,   c = 1 2   \,b=-1,\,c=\frac{1}{2}\, b=1,c=21

b. 特殊值法

  因子类型
    (1) ( x − a ) m (x-a)^m (xa)m,但   m   \,m\, m不是最高次幂.
    (2)   ( a x 2 + b x + c ) m    \,(ax^2+bx+c)^m\; (ax2+bx+c)m ( b 2 − 4 a c < 0 ) (b^2-4ac<0) (b24ac<0).

  思路:由于不是最高次幂,使用留数法以后会出现代入   x = a   \,x=a\, x=a等于无穷的情况,考虑代入其他特殊值

  例. 5 x + 1 ( x + 1 ) 2 \frac{5x+1}{(x+1)^2} (x+1)25x+1

  思路:
5 x + 1 ( x + 1 ) 2 = a x + 1 + b ( x + 1 ) 2        ( ∗ ) \frac{5x+1}{(x+1)^2}=\frac{a}{x+1}+\frac{b}{(x+1)^2}\;\;\;(*) (x+1)25x+1=x+1a+(x+1)2b()

   ( ∗ )   (*)\, ()式两边同乘   ( x + 1 ) 2   \,(x+1)^2\, (x+1)2:
5 x + 1 = a ( x + 1 ) + b 5x+1=a(x+1)+b 5x+1=a(x+1)+b

  令   x = − 1   \,x=-1\, x=1 b = − 4 b=-4 b=4.
  
  (特殊值法)
   ( ∗ )   (*)\, ()式两边同乘   ( x + 1 )    \,(x+1)\; (x+1)(不是最高次幂):
5 x + 1 x + 1 = a − 4 x + 1 \frac{5x+1}{x+1}=a-\frac{4}{x+1} x+15x+1=ax+14
  此时不能代入 x = − 1 x=-1 x=1,考虑代入   x = 1 \,x=1 x=1,解得   a = 5 \,a=5 a=5.

c. 极限法

  因子类型
    (1) ( x − a ) m (x-a)^m (xa)m,但   m   \,m\, m不是最高次幂.
    (2)   ( a x 2 + b x + c ) m    \,(ax^2+bx+c)^m\; (ax2+bx+c)m ( b 2 − 4 a c < 0 ) (b^2-4ac<0) (b24ac<0).

  思路:极限法与特殊值法应用场景相同,哪个方便用哪个. 由于不是最高次幂,使用留数法以后会出现代入   x = a   \,x=a\, x=a等于无穷的情况,考虑代入其他特殊值

  例. 5 x + 1 ( x + 1 ) 2 \frac{5x+1}{(x+1)^2} (x+1)25x+1

  思路:
5 x + 1 ( x + 1 ) 2 = a x + 1 + b ( x + 1 ) 2        ( ∗ ) \frac{5x+1}{(x+1)^2}=\frac{a}{x+1}+\frac{b}{(x+1)^2}\;\;\;(*) (x+1)25x+1=x+1a+(x+1)2b()

   ( ∗ )   (*)\, ()式两边同乘   ( x + 1 ) 2   \,(x+1)^2\, (x+1)2:
5 x + 1 = a ( x + 1 ) + b 5x+1=a(x+1)+b 5x+1=a(x+1)+b

  令   x = − 1   \,x=-1\, x=1 b = − 4 b=-4 b=4.
  
  (极限法)
   ( ∗ )   (*)\, ()式两边同乘   ( x + 1 )    \,(x+1)\; (x+1)(不是最高次幂):
5 x + 1 x + 1 = a − 4 x + 1 \frac{5x+1}{x+1}=a-\frac{4}{x+1} x+15x+1=ax+14
  此时不能代入 x = − 1 x=-1 x=1,考虑令   x → ∞   \,x\to\infty\, x,解得   a = 5 \,a=5 a=5.

(二) 三角函数的不定积分

  下面提供一些处理含三角函数的思路:

  (1) 积分出现    1 + cos x \;{\color{Blue}1+\text{cos}x} 1+cosx,考虑如下转换:
1 + cos x = 2 cos 2 x 2 {\color{Purple} 1+\text{cos}x=2\text{cos}^2\frac{x}{2} } 1+cosx=2cos22x

∫ d x 1 + cos x = ∫ d x 2 cos 2 x 2 = 1 2 ∫ sec 2 x 2 d x = tan x 2 + C \int\frac{\text{d}x}{1+\text{cos}x}=\int\frac{\text{d}x}{2\text{cos}^2\frac{x}{2}}=\frac{1}{2}\int\text{sec}^2\frac{x}{2}\text{d}x=\text{tan}\frac{x}{2}+C 1+cosxdx=2cos22xdx=21sec22xdx=tan2x+C

  (2) 积分出现    1 + sin x \;{\color{Blue}1+\text{sin}x} 1+sinx,可考虑如下三种转换:
1 + sin x = 1 + cos ( x − π 2 ) {\color{Purple} 1+\text{sin}x=1+\text{cos}(x-\frac{\pi}{2}) } 1+sinx=1+cos(x2π) 1 + sin x = sin 2 x + cos 2 x + 2   sin x 2 cos x 2 = ( sin x 2 + cos x 2 ) 2 {\color{Purple} 1+\text{sin}x=\text{sin}^2x+\text{cos}^2x+2\,\text{sin}\frac{x}{2}\text{cos}\frac{x}{2}=(\text{sin}\frac{x}{2}+\text{cos}\frac{x}{2})^2} 1+sinx=sin2x+cos2x+2sin2xcos2x=(sin2x+cos2x)2 1 1 + sin x = 1 − sin x cos 2 x = sec 2 x − tan x ⋅ sec x {\color{Purple} \frac{1}{1+\text{sin}x}=\frac{1-\text{sin}x}{\text{cos}^2x}=\text{sec}^2x-\text{tan}x\cdot\text{sec}x} 1+sinx1=cos2x1sinx=sec2xtanxsecx

∫ d x 1 + sin x = ∫ d ( x − π 2 ) 1 + cos ( x − π 2 ) = 2 ∫ d ( x 2 − π 4 ) 2 cos 2 ( x 2 − π 4 ) = tan ( x 2 − π 4 ) + C \int\frac{\text{d}x}{1+\text{sin}x}=\int\frac{\text{d}(x-\frac{\pi}{2})}{1+\text{cos}(x-\frac{\pi}{2})}=2\int\frac{\text{d}(\frac{x}{2}-\frac{\pi}{4})}{2\text{cos}^2(\frac{x}{2}-\frac{\pi}{4})}=\text{tan}(\frac{x}{2}-\frac{\pi}{4})+C 1+sinxdx=1+cos(x2π)d(x2π)=22cos2(2x4π)d(2x4π)=tan(2x4π)+C ∫ d x 1 + sin x = ∫ d x ( sin x 2 + cos x 2 ) 2 = ∫ sec 2 x 2 ( 1 + tan x 2 ) 2 d x \int\frac{\text{d}x}{1+\text{sin}x}=\int\frac{\text{d}x}{(\text{sin}\frac{x}{2}+\text{cos}\frac{x}{2})^2}=\int\frac{\text{sec}^2\frac{x}{2}}{(1+\text{tan}\frac{x}{2})^2}\text{d}x 1+sinxdx=(sin2x+cos2x)2dx=(1+tan2x)2sec22xdx ∫ d x 1 + sin x = ∫ 1 − sin x cos 2 x d x = . . . \int\frac{\text{d}x}{1+\text{sin}x}=\int\frac{1-\text{sin}x}{\text{cos}^2x}\text{d}x=... 1+sinxdx=cos2x1sinxdx=...

  (3) 积分出现   a sin x + b cos x \,{\color{Blue}a\text{sin}x+b\text{cos}x} asinx+bcosx,可考虑辅助角公式:
a   sin x + b   cos x = a 2 + b 2   sin ( x + arctan b a )      ( a > 0 ) {\color{Purple} a\,\text{sin}x+b\,\text{cos}x=\sqrt{a^2+b^2}\,\text{sin}(x+\text{arctan}\frac{b}{a})\;\;(a>0)} asinx+bcosx=a2+b2 sin(x+arctanab)(a>0) a   sin x + b   cos x = a 2 + b 2   cos ( x − arctan a b )      ( b > 0 ) {\color{Purple} a\,\text{sin}x+b\,\text{cos}x=\sqrt{a^2+b^2}\,\text{cos}(x-\text{arctan}\frac{a}{b})\;\;(b>0)} asinx+bcosx=a2+b2 cos(xarctanba)(b>0)

∫ d x 2 + sin x + cos x = 1 2 ∫ d x 1 + sin ( x + π 4 ) \int\frac{\text{d}x}{\sqrt{2}+\text{sin}x+\text{cos}x}=\frac{1}{\sqrt{2}}\int\frac{\text{d}x}{1+\text{sin}(x+\frac{\pi}{4})} 2 +sinx+cosxdx=2 11+sin(x+4π)dx ∫ 1 cos x − sin x d x = 1 2 ∫ d ( x + π 4 ) cos ( x + π 4 ) \int\frac{1}{\text{cos}{x}-\text{sin}x}\text{d}x=\frac{1}{\sqrt{2}}\int\frac{\text{d}(x+\frac{\pi}{4})}{\text{cos}(x+\frac{\pi}{4})} cosxsinx1dx=2 1cos(x+4π)d(x+4π)

  (4) 积分出现   sin 2 x \,{\color{Blue}\text{sin}^2x} sin2x cos 2 x   {\color{Blue}\text{cos}^2x}\, cos2x   常 数   {\,\color{Blue}常数}\, 时,考虑进行如下转换 (此法运用十分广泛):
分 子 分 母 同 除 : cos 2 x {\color{Purple} 分子分母同除:\text{cos}^2x} cos2x

∫ d x 1 + cos 2 x = ∫ sec 2 x sec 2 x + 1 d x = ∫ d ( tan x ) ( 2 ) 2 + tan 2 x \int\frac{\text{d}x}{1+\text{cos}^2x}=\int\frac{\text{sec}^2x}{\text{sec}^2x+1}\text{d}x=\int\frac{\text{d}(\text{tan}x)}{(\sqrt{2})^2+\text{tan}^2x} 1+cos2xdx=sec2x+1sec2xdx=(2 )2+tan2xd(tanx)

  (5) 积分出现   sin x ⋅ cos x \,{\color{Blue}\text{sin}x\cdot\text{cos}x} sinxcosx,进行如下转换:
sin x ⋅ cos x = 1 2 ⋅ sin 2 x {\color{Purple} \text{sin}x\cdot\text{cos}x=\frac{1} {2}\cdot\text{sin}2x} sinxcosx=21sin2x

  (6) 当被积函数可表示为:
  a   sin x + b   cos x c   sin x + d   cos x \,{\color{Blue}\frac{a\,\text{sin}x+b\,\text{cos}x}{c\,\text{sin}x+d\,\text{cos}x}} csinx+dcosxasinx+bcosx

    令      a   sin x + b   cos x = A ( c   sin x + d   cos x ) + B ( c   sin x + d   cos x ) ′ \;\;{\color{Purple} a\,\text{sin}x+b\,\text{cos}x=A(c\,\text{sin}x+d\,\text{cos}x)+B(c\,\text{sin}x+d\,\text{cos}x)' } asinx+bcosx=A(csinx+dcosx)+B(csinx+dcosx)

  例:
∫ d x 1 + 2 tan x = ∫ cos x 2 sin x + cos x d x \int\frac{\text{d}x}{1+2\text{tan}x}=\int\frac{\text{cos}x}{2\text{sin}x+\text{cos}x}\text{d}x 1+2tanxdx=2sinx+cosxcosxdx   令    cos x = a ( 2 sin x + cos x ) + b ( 2 sin x + cos x ) ′ ⇒ { 2 a − b = 0 a + 2 b = 1 ⇒ a = 1 5 , b = 2 5 \;\text{cos}x=a(2\text{sin}x+\text{cos}x)+b(2\text{sin}x+\text{cos}x)'\Rightarrow\begin{cases}2a-b=0\\a+2b=1\end{cases}\Rightarrow a=\frac{1}{5},b=\frac{2}{5} cosx=a(2sinx+cosx)+b(2sinx+cosx){2ab=0a+2b=1a=51b=52.
   故:
∫ d x 1 + 2 tan x = 1 5 ∫ d x + 2 5 ∫ d ( 2 sin x + cos x ) 2 sin x + cos x = x 5 + 2 5 ln ∣ 2 sin x + cos x ∣ + C \int\frac{\text{d}x}{1+2\text{tan}x}=\frac{1}{5}\int\text{d}x+\frac{2}{5}\int\frac{\text{d}(2\text{sin}x+\text{cos}x)}{2\text{sin}x+\text{cos}x}=\frac{x}{5}+\frac{2}{5}\text{ln}|2\text{sin}x+\text{cos}x|+C 1+2tanxdx=51dx+522sinx+cosxd(2sinx+cosx)=5x+52ln2sinx+cosx+C

  (7) 被积函数分子为   1   \,{\color{Blue}1}\, 1,分母为   三 角 函 数 乘 积   \,{\color{Blue}三角函数乘积}\, 时,进行如下转换:
1 = sin 2 x + cos 2 x {\color{Purple} 1=\text{sin}^2x+\text{cos}^2x } 1=sin2x+cos2x

∫ d x sin x ⋅ sin2 x = 1 2 ∫ d x sin 2 x ⋅ cos x = 1 2 ∫ sin 2 x + cos 2 x sin 2 x ⋅ cos x \int\frac{\text{d}x}{\text{sin}x\cdot\text{sin2}x}=\frac{1}{2}\int\frac{\text{d}x}{\text{sin}^2x\cdot\text{cos}x}=\frac{1}{2}\int\frac{\text{sin}^2x+\text{cos}^2x}{\text{sin}^2x\cdot\text{cos}x} sinxsin2xdx=21sin2xcosxdx=21sin2xcosxsin2x+cos2x

  连用两次   1 = sin 2 x + cos 2 x \,1=\text{sin}^2x+\text{cos}^2x 1=sin2x+cos2x
∫ d x sin x cos x 4 \int\frac{\text{d}x}{\text{sin}x\text{cos}x^4} sinxcosx4dx

  (8) 积分出现   sin 2 x \,{\color{Blue}\text{sin}^2x} sin2x cos 2 x   {\color{Blue}\text{cos}^2x}\, cos2x sin 2 x   ( 或 sin x cos x )   {\color{Blue}\text{sin}2x\,(或\text{sin}x\text{cos}x)}\, sin2x(sinxcosx)时,考虑进行如下转换:
( sin 2 x ) ′ = sin 2 x , ( cos 2 x ) ′ = − sin 2 x {\color{Purple} (\text{sin}^2x)' = \text{sin}2x,(\text{cos}^2x)' = -\text{sin}2x} (sin2x)=sin2x(cos2x)=sin2x

( a   sin 2 x + b   cos 2 x ) ′ = ( a − b ) sin 2 x (a\,\text{sin}^2x+b\,\text{cos}^2x)'=(a-b)\text{sin}2x (asin2x+bcos2x)=(ab)sin2x

∫ sin 2 x   d x sin 2 x − 2 cos 2 x : \int\frac{\text{sin}2x\,\text{d}x}{\text{sin}^2x-2\text{cos}^2x}: sin2x2cos2xsin2xdx   因为: ( sin 2 x − 2 cos 2 x ) ′ = 3 sin 2 x (\text{sin}^2x-2\text{cos}^2x)'=3\text{sin}^2x (sin2x2cos2x)=3sin2x
∫ sin 2 x   d x sin 2 x − 2 cos 2 x = 1 3 ∫ 3 sin 2 x   d x sin 2 x − 2 cos 2 x = 1 3 ∫ d ( sin 2 x − 2 cos 2 x ) sin 2 x − 2 cos 2 x \int\frac{\text{sin}2x\,\text{d}x}{\text{sin}^2x-2\text{cos}^2x}=\frac{1}{3}\int\frac{3\text{sin}2x\,\text{d}x}{\text{sin}^2x-2\text{cos}^2x}=\frac{1}{3}\int\frac{\text{d}(\text{sin}^2x-2\text{cos}^2x)}{\text{sin}^2x-2\text{cos}^2x} sin2x2cos2xsin2xdx=31sin2x2cos2x3sin2xdx=31sin2x2cos2xd(sin2x2cos2x)

  (9) 积分出现   cos 2 x \,{\color{Blue}\text{cos}2x} cos2x sin x cos x   {\color{Blue} {\text{sin}x\text{cos}x}}\, sinxcosx时,进行如下转换:
( sin x cos x ) ′ = cos 2 x {\color{Purple} (\text{sin}x\text{cos}x)'=\text{cos}2x} (sinxcosx)=cos2x

∫ cos 2 x   d x ( 3 + sin x cos x ) 2 : \int\frac{\text{cos}2x\,\text{d}x}{(3+\text{sin}x\text{cos}x)^2}: (3+sinxcosx)2cos2xdx  因为: ( 3 + sin x cos x ) ′ = cos 2 x (3+\text{sin}x\text{cos}x)'=\text{cos}2x (3+sinxcosx)=cos2x
∫ cos 2 x   d x ( 3 + sin x cos x ) 2 = ∫ d ( 3 + sin x cos x ) 3 + sin x cos x \int\frac{\text{cos}2x\,\text{d}x}{(3+\text{sin}x\text{cos}x)^2}=\int\frac{\text{d}(3+\text{sin}x\text{cos}x)}{3+\text{sin}x\text{cos}x} (3+sinxcosx)2cos2xdx=3+sinxcosxd(3+sinxcosx)

  (10) 积分出现积分出现   sin 4 x + cos 4 x   \,{\color{Blue}\text{sin}^4x+\text{cos}^4x}\, sin4x+cos4x时,进行如下转换:
sin 4 x + cos 4 x = 1 − 2 sin 2 x cos 2 x {\color{Purple} \text{sin}^4x+\text{cos}^4x=1-2\text{sin}^2x\text{cos}^2x} sin4x+cos4x=12sin2xcos2x

  (11) 积分出现   sin 2 x \,{\color{Blue}\text{sin}^2x} sin2x cos 2 x   {\color{Blue}\text{cos}^2x}\, cos2x   tan x   {\,\color{Blue}\text{tan}x}\, tanx时,进行如下转换:
sin 2 x + cos 2 x = cos 2 x ( tan x 2 + 1 ) {\color{Purple}\text{sin}^2x+\text{cos}^2x= \text{cos}^2x(\text{tan}x^2+1)} sin2x+cos2x=cos2x(tanx2+1)

∫ tan x d x a 2 sin 2 x + b 2 cos 2 x = ∫ tan x d x cos 2 x ( a 2 tan 2 x + b 2 ) = ∫ tan x a 2 tan 2 x + b 2 d ( tan x )      ( a b ≠ 0 ) \int\frac{\text{tan}x\text{d}x}{a^2\text{sin}^2x+b^2\text{cos}^2x}=\int\frac{\text{tan}x\text{d}x}{\text{cos}^2x(a^2\text{tan}^2x+b^2)}=\int\frac{\text{tan}x}{a^2\text{tan}^2x+b^2} \text{d}(\text{tan}x)\;\;(ab\neq 0) a2sin2x+b2cos2xtanxdx=cos2x(a2tan2x+b2)tanxdx=a2tan2x+b2tanxd(tanx)(ab=0)

  (12) 万能公式 (应用范围最广,但通常比较耗时,不建议直接使用)

    使用条件:被积函数只含三角函数.

    令    u = tan x 2    ( − π < x < π ) \;\color{Purple}u=\text{tan}\frac{x}{2}\;(-\pi<x<\pi) u=tan2x(π<x<π)
sin x = 2 u 1 + u 2 , cos x = 1 − u 2 1 + u 2 , d x = 2 1 + u 2 d u \color{Purple}\text{sin}x=\frac{2u}{1+u^2},\text{cos}x=\frac{1-u^2}{1+u^2},\text{d}x=\frac{2}{1+u^2}\text{d}u sinx=1+u22ucosx=1+u21u2dx=1+u22du
    注意
      a) 建议先进行适当整理,再使用万能公式,可减少计算量 (尽量剩下   sin x 、 cos x 、 tan x 2 \,\text{sin}x、\text{cos}x、\text{tan}\frac{x}{2} sinxcosxtan2x).
      b) 如果是关于   x   \,x\, x的三角函数,设   u = tan x 2 \,u=\text{tan}\frac{x}{2} u=tan2x. 如果是关于   2 x   \,2x\, 2x的三角函数,设   u = tan x \,u=\text{tan}x u=tanx. 如果是关于   4 x   \,4x\, 4x的三角函数,设   u = tan 2 x \,u=\text{tan}2x u=tan2x…以此类推.

∫ d x sin 2 x + 2 sin x = 1 2 ∫ d(tan x 2 ) sin x = 1 2 ∫ ( 1 u + u ) d u \int\frac{\text{d}x}{\text{sin}2x+2\text{sin}x}=\frac{1}{2}\int{\frac{\text{d(tan}\frac{x}{2}) }{\text{sin}x}}=\frac{1}{2}\int{(\frac{1}{u}+u)\text{d}u} sin2x+2sinxdx=21sinxd(tan2x)=21(u1+u)du

4 重要结论

  1. 连续函数必有原函数,但有原函数的函数不一定连续.
  2. 积分一定是连续函数.
  3. 有第一类间断点的函数一定没有原函数.
  4. 有第二类间断点的函数有可能有原函数,也可能没有原函数.
  5. 若   f ( x )   \,f(x)\, f(x)有原函数,则一定有无数个原函数,且任意两个原函数之差为常数.

题型

1 基本概念 (选择题)

2 求不定积分

(一) 换元积分法
(二) 分部积分法
(三) 有理函数不定积分

  思路
    参考记忆内容部分的有理函数不定积分.

(四) 三角函数不定积分

  思路
    参考记忆内容部分的三角函数不定积分.

(五) 分段有理函数积分

  思路
    下面以 ∫ e ∣ x ∣ d x \int e^{|x|}\text{d}x exdx为例:
     1 o    1^o\; 1o求出分段函数:
e ∣ x ∣ = { e x , x ⩾ 0 , e − x , x < 0 , e^{|x|}=\begin{cases}e^x,&x\geqslant0,\\e^{-x},&x<0,\end{cases} ex={exexx0x<0
     2 o    2^o\; 2o分段求出积分,每一段结果后加的常数要分别写为   C 1 , C 2 , . . . , C n \,C_1,C_2,...,C_n C1,C2,...,Cn
∫ e ∣ x ∣ d x = { e x + C 1 , x ⩾ 0 , − e − x + C 2 , x < 0 , \int e^{|x|}\text{d}x=\begin{cases}e^x+C_1,&x\geqslant0,\\-e^{-x}+C_2,&x<0,\end{cases} exdx={ex+C1ex+C2x0x<0

     3 o    3^o\; 3o确定   C i   \,C_i\, Ci之间的关系 (因为积分一定是连续函数):
      取   C 1 = C \,C_1=C C1=C,由   1 + C = − 1 + C 2 \,1+C=-1+C_2 1+C=1+C2,得   C 2 = C + 2 \,C_2=C+2 C2=C+2.
∫ e ∣ x ∣ d x = { e x + C , x ⩾ 0 , − e − x + C + 2 , x < 0. \int e^{|x|}\text{d}x=\begin{cases}e^x+C,&x\geqslant0,\\-e^{-x}+C+2,&x<0.\end{cases} exdx={ex+Cex+C+2x0x<0.
    特别注意:如果间断点不止一个(比如出现其中一段的范围是   2 ⩽ x ⩽ 5 \,2\leqslant x\leqslant 5 2x5 x = 2   x=2\, x=2   x = 5   \,x=5\, x=5都是间断点),且通过按照第   3 o   \,3^o\, 3o步解得的关系不同( x = 2   x=2\, x=2   x = 5   \,x=5\, x=5分别得到两个不同的关系),此时同一个段函数积分后需要再拆成两段!

(六) 综合型不定积分

  特征
    综合使用两类换元积分法、分部积分法、有理函数/三角函数不定积分.

3 根据已知条件求不定积分

  主要有以下几种题型:
    (1) 根据函数关系式解出函数,再求其不定积分
      例. f ( x 2 − 1 ) = ln x 2 x 2 − 2 f(x^2-1)=\text{ln}{\frac{x^2}{x^2-2}} f(x21)=lnx22x2,且   f [ φ ( x ) ] = ln x \,f[\varphi(x)]=\text{ln}x f[φ(x)]=lnx,求 ∫ φ ( x ) d x \int\varphi(x)\text{d}x φ(x)dx.
    (2) 函数是一个极限. 先求极限,再求其不定积分.
      例. f ( x ) = lim ⁡ t → x ( x − 1 t − 1 ) 1 x − t f(x)=\lim\limits_{t \to x}\big(\frac{x-1}{t-1}\big)^{\frac{1}{x-t}} f(x)=txlim(t1x1)xt1,求   ∫ f ( x ) ( x − 1 ) 2 d x \,\int\frac{f(x)}{(x-1)^2}\text{d}x (x1)2f(x)dx.
    (3) 通过   F ( x )   \,F(x)\, F(x)求不定积分

Part 2 定积分及其应用

记忆内容

1 基本概念

(一) 定积分的定义

∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i \int^b_af(x)\text{d}x=\lim\limits_{\lambda\to 0} \sum\limits^{n}_{i=1} f(\xi_i)\Delta x_i abf(x)dx=λ0limi=1nf(ξi)Δxi

  注意:
    (1) λ → 0 ⇒ n → ∞ \lambda\to0\Rightarrow n\to\infty λ0n,反之不对.
    (2) lim ⁡ λ → 0 f ( ξ i ) Δ x i   \lim\limits_{\lambda\to 0}f(\xi_i)\Delta x_i\, λ0limf(ξi)Δxi   [ a , b ]   \,[a,b]\, [a,b]的分法、 ξ i   \xi_i\, ξi的取法都无关.
    (3) f ( x )   f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上有界只是可积的必要条件.
    (4) 定积分由上下限和函数关系决定,与积分变量无关.
    (5) 重要关系 (用于求极限):
lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i n ) = lim ⁡ n → ∞ 1 n ∑ i = 1 n f ( i − 1 n ) = ∫ 0 1 f ( x ) d x \lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{n}f\bigg(\frac{i}{n}\bigg)=\lim\limits_{n \to \infty}{\frac{1}{n}\sum\limits_{i=1}^{n}{f\bigg(\frac{i-1}{n}\bigg)}}=\int_{0}^{1}f(x)dx nlimn1i=1nf(ni)=nlimn1i=1nf(ni1)=01f(x)dx lim ⁡ n → ∞ 1 n ∑ i = 1 k n f ( i n ) = ∫ 0 k f ( x ) d x \lim\limits_{n \to \infty} \frac{1}{n} \sum\limits_{i=1}^{kn}f\bigg(\frac{i}{n}\bigg)=\int_{0}^{k}f(x)dx nlimn1i=1knf(ni)=0kf(x)dx lim ⁡ n → ∞ b − a n ∑ i = 1 n f [ a + i n ( b − a ) ] = ∫ a b f ( x ) d x \lim_{n\to\infty}\frac{b-a}{n}\sum\limits_{i=1}^nf\bigg[a+\frac{i}{n}(b-a)\bigg]=\int^b_af(x)\text{d}x nlimnbai=1nf[a+ni(ba)]=abf(x)dx

(二) 原函数存在条件

  1. 连续函数   f ( x )   \,f(x)\, f(x)必有原函数   F ( x )   \,F(x)\, F(x).
  2. 含有第一类间断点无穷间断点的函数   f ( x )   \,f(x)\, f(x)没有原函数 (可由导数介值定理确定).

  从第2点可以看出,原函数可导,其求导后得到的导函数要么连续,要么含有振荡间断点,只能是两种情况之一.

(三) 可积的条件 (定积分的存在性)

  满足下列条件之一 f ( x )   f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上可积:
    1. f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b].
    2. f ( x )   f(x)\, f(x)有界且在   [ a , b ]   \,[a,b]\, [a,b]上存在有限个间断点 (即不含无穷间断点,可能含有第一类间断点或振荡间断点).
    3. f ( x )   f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上单调.

  注意
    (1) 可积存在原函数是不同的概念. 可积,原函数不一定存在;原函数存在,不一定可积,二者没有必然关系.
    (2) 可积的必要条件:有界. 以上三个条件都包含了有界.

  积不出来的定积分总结
    有的定积分虽然满足可积条件,但无法使用求定积分的方法求解.
∫ a b x 2 n e ± a x 2 d x      ( a ≠ 0 , n = 0 , 1 , 2 , . . . ) \int^b_ax^{\color{Red}2n}e^{\pm ax^2}\text{d}x\;\;(a\neq 0,n=0,1,2,...) abx2ne±ax2dx(a=0,n=0,1,2,...) ∫ a b e k x d x \int^b_ae^{\frac{k}{x}}\text{d}x abexkdx ∫ a b e a x x d x      ( a ≠ 0 ) \int^b_a\frac{e^{ax}}x\text{d}x\;\;(a\neq 0) abxeaxdx(a=0) ∫ a b sin k x d x , ∫ a b cos k x d x \int^b_a\text{sin}{\frac{k}{x}}\text{d}x,\int^b_a\text{cos}{\frac{k}{x}}\text{d}x absinxkdxabcosxkdx ∫ a b sin x x d x , ∫ a b cos x x d x , ∫ a b tan x x d x \int^b_a\frac{\text{sin}x}{x}\text{d}x,\int^b_a\frac{\text{cos}x}{x}\text{d}x,\int^b_a\frac{\text{tan}x}{x}\text{d}x abxsinxdxabxcosxdxabxtanxdx ∫ a b sin x 2 d x , ∫ a b cos x 2 d x , ∫ a b tan x 2 d x \int^b_a\text{sin}x^2\text{d}x,\int^b_a\text{cos}x^2\text{d}x,\int^b_a\text{tan}x^2\text{d}x absinx2dxabcosx2dxabtanx2dx ∫ a b x n ln x d x      ( n ≠ − 1 ) \int^b_a\frac{x^n}{\text{ln}x}\text{d}x\;\;(n\neq-1) ablnxxndx(n=1) ∫ a b ln x x + a d x      ( a ≠ 0 ) \int^b_a\frac{\text{ln}x}{x+a}\text{d}x\;\;(a\neq0) abx+alnxdx(a=0) ∫ a b 1 x 4 + a d x      ( a ≠ 0 ) \int^b_a\frac{1}{\sqrt{x^4+a}}\text{d}x\;\;(a\neq 0) abx4+a 1dx(a=0) ∫ a b x 1 + x 3 d x \int^b_a\frac{x}{\sqrt{1+x^{3}}}\text{d}x ab1+x3 xdx

(四) F ( x )   F(x)\, F(x)的性质

  若   f ( x )   \,f(x)\, f(x)可积,则有   F ( x ) = ∫ a x f ( t ) d t \,F(x)=\int_a^xf(t)\text{d}t F(x)=axf(t)dt

    1. F ( x ) ∈ C [ a , b ] F(x)\in C[a,b] F(x)C[a,b],且:
      (1) 若   x   \,x\, x   f ( x )   \,f(x)\, f(x)连续点,则   F ( x )   \,F(x)\, F(x)在该点可导.
      (2) 若   x   \,x\, x   f ( x )   \,f(x)\, f(x)间断点,则   F ( x )   \,F(x)\, F(x)在该点连续但不一定可导.

  注意:由于可积条件已经排除无穷间断点,所以这里的间断点可能是第一类间断点或振荡间断点:
  被积函数为可去间断点 F ( x )   F(x)\, F(x)在该点可导.
  被积函数为跳跃间断点 F ( x )   F(x)\, F(x)在该点不可导. (其左右导数分别等于被积函数这点的左右极限)
  被积函数为振荡间断点 F ( x )   F(x)\, F(x)在该点导数可能存在,也可能不存在. 具体来说,如果是有界振荡点,则可导;如果是无界振荡点,则导数不存在(根本不满足可积的条件).

    2. F ( x )   F(x)\, F(x)   f ( x )   \,f(x)\, f(x)奇偶性关系:
      (1) 若   f ( x )   \,f(x)\, f(x)为奇函数,则   F ( x )   \,F(x)\, F(x)一定是偶函数.
      (2) 若   f ( x )   \,f(x)\, f(x)为偶函数,则   F ( x )   \,F(x)\, F(x)不一定是奇函数,但   ∫ 0 x f ( t ) d t   \,\int^x_0f(t)\text{d}t\, 0xf(t)dt一定是奇函数.

    3. F ( x )   F(x)\, F(x)   f ( x )   \,f(x)\, f(x)周期性关系:
      (1) 若   f ( x )   \,f(x)\, f(x)是周期函数, F ( x )   F(x)\, F(x)不一定是周期函数.
      (2) 若   f ( x )   \,f(x)\, f(x)是周期函数且   ∫ 0 T f ( x ) d x = 0   \,\int^T_0f(x)\text{d}x=0\, 0Tf(x)dx=0,则   F ( x )   \,F(x)\, F(x)必为是周期函数.

∫ 0 T f ( x ) d x = 0 ⇔ F ( x ) = F ( x + T ) \int^T_0f(x)\text{d}x=0\Leftrightarrow F(x)=F(x+T) 0Tf(x)dx=0F(x)=F(x+T)

2 微积分基本定理

(一) 变积分限函数

  定理:
     f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b] Φ ( x ) = ∫ 0 x f ( t ) d t \Phi(x)=\int^x_0f(t)\text{d}t Φ(x)=0xf(t)dt,则   Φ ′ ( x ) = f ( x ) \,\Phi'(x)=f(x) Φ(x)=f(x).

  注意
    (1) 连续函数必然存在原函数: f ( x )   f(x)\, f(x)连续   ⇒ Φ ( x ) = ∫ a x f ( t ) d t   \,\Rightarrow\Phi(x)=\int^x_af(t)\text{d}t\, Φ(x)=axf(t)dt   f ( x )   \,f(x)\, f(x)原函数.

    (2) d d x ∫ a x f ( t ) d t = f ( x ) \frac{\text{d}}{\text{d}x}\int^x_af(t)\text{d}t=f(x) dxdaxf(t)dt=f(x)

    (3) d d x ∫ a φ ( x ) f ( t ) d t = f [ φ ( x ) ] ⋅ φ ′ ( x ) \frac{\text{d}}{\text{d}x}\int^{\varphi(x)}_af(t)\text{d}t=f[\varphi(x)]\cdot\varphi'(x) dxdaφ(x)f(t)dt=f[φ(x)]φ(x)

    (4) d d x ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t = f [ φ 2 ( x ) ] ⋅ φ 2 ′ ( x ) − f [ φ 1 ( x ) ] ⋅ φ 1 ′ ( x ) \frac{\text{d}}{\text{d}x}\int^{\varphi_2(x)}_{\varphi_1(x)}f(t)\text{d}t=f[\varphi_2(x)]\cdot\varphi'_2(x)-f[\varphi_1(x)]\cdot\varphi'_1(x) dxdφ1(x)φ2(x)f(t)dt=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x)

    (5) 使用变积分限函数计算时,必须先将被积函数中的积分限变量清理干净 (通过直接拆、积分限变换两种方式),再求导数:

F ( x ) = ∫ 0 x ( x − t ) f ( t ) d t = x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t F(x)=\int^x_0(x-t)f(t)\text{d}t=x\int^x_0f(t)\text{d}t-\int^x_0tf(t)\text{d}t F(x)=0x(xt)f(t)dt=x0xf(t)dt0xtf(t)dt F ( x ) = ∫ 0 x f ( x − t ) d t = x − t = u ∫ 0 x f ( u ) d u F(x)=\int^x_0f(x-t)\text{d}t\xlongequal{x-t=u}\int_0^x f(u)\text{d}u F(x)=0xf(xt)dtxt=u 0xf(u)du

    (6) 有的积分看上去是定积分,实际上也是变积分限函数.

  如:
lim ⁡ x → 0 ∫ − 1 2 e − x 2 t 2 d t − 3 x 2 \lim\limits_{x\to 0}\frac{\int^2_{-1}e^{-x^2t^2}\text{d}t-3}{x^2} x0limx212ex2t2dt3

  其中的   ∫ − 1 2 e − x 2 t 2 d t   \,\int^2_{-1}e^{-x^2t^2}\text{d}t\, 12ex2t2dt实际上就是变积分限函数 (用代换清理被积函数中的   x   \,x\, x后,会发现积分上下限中都出现   x \,x x)
  正因如此,我们可以直接进行下面等价无穷小的替换简化极限求解.
∫ − 1 2 e − x 2 t 2 d t − 3 = ∫ − 1 2 ( e − x 2 t 2 − 1 ) d t ∼ ∫ − 1 2 − x 2 t 2 d t = − 3 x 2 \int^2_{-1}e^{-x^2t^2}\text{d}t-3=\int^2_{-1}(e^{-x^2t^2}-1)\text{d}t\sim\int^2_{-1}-x^2t^2\text{d}t=-3x^2 12ex2t2dt3=12(ex2t21)dt12x2t2dt=3x2

(二) N . − L . N.-L. N.L. (牛顿-莱布尼茨公式)

  定理:
     f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b],且   F ( x )   \,F(x)\, F(x)   f ( x )   \,f(x)\, f(x)的一个原函数,则
∫ a b f ( x ) d x = F ( b ) − F ( a ) . \int^b_af(x)\text{d}x=F(b)-F(a). abf(x)dx=F(b)F(a).

  注意
    (1) N . − L .   N.-L.\, N.L.的这两种形式也要熟悉:
F ( b ) = F ( a ) + ∫ a b f ( x ) d x F(b)=F(a)+\int^b_af(x)\text{d}x F(b)=F(a)+abf(x)dx f ( b ) − f ( a ) = ∫ a b f ′ ( x ) d x f(b)-f(a)=\int^b_af'(x)\text{d}x f(b)f(a)=abf(x)dx

    (2) 导数的定义结合   N . − L .   \,N.-L.\, N.L.要能一眼看出,且能构造:
lim ⁡ x → a ∫ a x f ( u ) d u x − a = lim ⁡ x → a f ( x ) \lim\limits_{x\to a}\frac{\int^x_af(u)\text{d}u}{x-a}=\lim\limits_{x\to a}f(x) xalimxaaxf(u)du=xalimf(x)

    (3) 使用   N . − L .   \,N.-L.\, N.L.必须保证函数在区间上有定义连续.

3 定积分的性质

(一) 一般性质
简单性质

∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int^b_af(x)\text{d}x=-\int_b^af(x)\text{d}x abf(x)dx=baf(x)dx ∫ a a f ( x ) d x = 0 \int_a^af(x)\text{d}x=0 aaf(x)dx=0 ∫ a b [ f ( x ) ± g ( x ) ] d x = ∫ a b f ( x ) d x ± ∫ a b g ( x ) d x \int^b_a[f(x)\pm g(x)]\text{d}x=\int^b_af(x)\text{d}x\pm\int^b_ag(x)\text{d}x ab[f(x)±g(x)]dx=abf(x)dx±abg(x)dx ∫ a b k f ( x ) d x = k ∫ a b f ( x ) d x \int^b_akf(x)\text{d}x=k\int^b_af(x)\text{d}x abkf(x)dx=kabf(x)dx ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int^b_af(x)\text{d}x=\int^c_af(x)\text{d}x+\int^b_cf(x)\text{d}x abf(x)dx=acf(x)dx+cbf(x)dx ∫ a b 1 d x = b − a \int^b_a1\text{d}x=b-a ab1dx=ba f ( x ) ⩾ 0      ( a ⩽ x ⩽ b ) ⇒ ∫ a b f ( x ) d x ⩾ 0 f(x)\geqslant0\;\;(a\leqslant x\leqslant b) \Rightarrow \int^b_af(x)\text{d}x\geqslant0 f(x)0(axb)abf(x)dx0 f ( x ) ⩾ g ( x )      ( a ⩽ x ⩽ b ) ⇒ ∫ a b f ( x ) d x ⩾ ∫ a b g ( x ) d x f(x)\geqslant g(x)\;\;(a\leqslant x\leqslant b) \Rightarrow \int^b_af(x)\text{d}x\geqslant\int^b_ag(x)\text{d}x f(x)g(x)(axb)abf(x)dxabg(x)dx

  若   f ( x ) ⩾ g ( x )   \,f(x)\geqslant g(x)\, f(x)g(x)   f ( x ) ≢ g ( x ) \,f(x)\not\equiv g(x) f(x)g(x),则必有   ∫ a b f ( x ) d x > ∫ a b g ( x ) d x \,\int^b_af(x)\text{d}x>\int^b_ag(x)\text{d}x abf(x)dx>abg(x)dx

∣ ∫ a b f ( x ) d x ∣ ⩽ ∫ a b ∣ f ( x ) ∣ d x \bigg|\int^b_af(x)\text{d}x\bigg|\leqslant\int^b_a\bigg|f(x)\bigg|\text{d}x abf(x)dxabf(x)dx m ( b − a ) ⩽ ∫ a b f ( x ) d x ⩽ M ( b − a ) m(b-a)\leqslant \int^b_af(x)\text{d}x\leqslant M(b-a) m(ba)abf(x)dxM(ba)

积分中值定理

  (基本形式) f ( x ) ∈ C [ a , b ] f(x)\in C{[a,b]} f(x)C[a,b],则   ∃ ξ ∈ [ a , b ] \,\exist\xi\in{\color{Blue}[}a,b{\color{Blue}]} ξ[a,b],使
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . \int_a^bf(x)\text{d}x=f(\xi)(b-a). abf(x)dx=f(ξ)(ba).

  (推广积分中值定理) f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b],则   ∃ ξ ∈ ( a , b ) \,\exist\xi\in{\color{Blue}(}a,b{\color{Blue})} ξ(a,b),使
∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . \int_a^bf(x)\text{d}x=f(\xi)(b-a). abf(x)dx=f(ξ)(ba).

  (积分第一中值定理) f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b] g ( x )   g(x)\, g(x)   [ a , b ]   \,[a,b]\, [a,b]上可积且不变号,则   ∃ ξ ∈ [ a , b ] \,\exist\xi\in{\color{Blue}[}a,b{\color{Blue}]} ξ[a,b],使
∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x . \int_a^bf(x)g(x)\text{d}x=f(\xi)\int_a^bg(x)\text{d}x. abf(x)g(x)dx=f(ξ)abg(x)dx.

  变号的出去,不变号的留下!

  (推广积分第一中值定理) f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b] g ( x )   g(x)\, g(x)   [ a , b ]   \,[a,b]\, [a,b]上可积且不变号,则   ∃ ξ ∈ ( a , b ) \,\exist\xi\in{\color{Blue}(}a,b{\color{Blue})} ξ(a,b),使
∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x . \int_a^bf(x)g(x)\text{d}x=f(\xi)\int_a^bg(x)\text{d}x. abf(x)g(x)dx=f(ξ)abg(x)dx.

  强烈建议读者掌握几种积分中值定理的证明过程. 证明基本形式和积分第一中值定理需要用到介值定理,证明两种推广积分中值定理则是使用中值定理 (推广积分中值定理使用   L   \,\text{L}\, L证明,推广积分第一中值定理使用   C   \,\text{C}\, C证明).

  注意
    (1) 在定积分相关证明题目的条件中,若出现定积分的积分区间长度与其系数成倒数关系,应该第一时间考虑使用积分中值定理.
    (2) 注意积分中值定理基本形式积分第一中值定理针对闭区间推广积分中值定理推广积分第一中值定理则是针对开区间.

判断定积分大小

  case1:
{ f ( x ) ∈ C [ a , b ] f ( x ) ⩾ 0 ∫ a b f ( x ) d x = 0 ⇒ f ( x ) ≡ 0      ( a ⩽ x ⩽ b ) \begin{cases}f(x)\in C[a,b]\\f(x)\geqslant0\\\int^b_af(x)\text{d}x=0\end{cases}\Rightarrow f(x)\equiv 0\;\;(a\leqslant x\leqslant b) f(x)C[a,b]f(x)0abf(x)dx=0f(x)0(axb)

  case2:
{ f ( x ) ∈ C [ a , b ] f ( x ) ⩾ 0 f ( x ) ≢ ​ 0 ⇒ ∫ a b f ( x ) d x > 0 \begin{cases}f(x)\in C[a,b]\\f(x)\geqslant0\\f(x)\not\equiv​0\end{cases}\Rightarrow \int_a^b f(x)\text{d}x > 0 f(x)C[a,b]f(x)0f(x)0abf(x)dx>0

  case3:
{ f ( x ) 、 g ( x ) ∈ C [ a , b ] f ( x ) ⩾ g ( x ) f ( x ) ≢ ​ g ( x ) ⇒ ∫ a b f ( x ) d x > ∫ a b g ( x ) d x \begin{cases}f(x)、g(x)\in C[a,b]\\f(x)\geqslant g(x)\\f(x)\not\equiv​g(x)\end{cases}\Rightarrow \int_a^b f(x)\text{d}x > \int_a^b g(x)\text{d}x f(x)g(x)C[a,b]f(x)g(x)f(x)g(x)abf(x)dx>abg(x)dx

柯西不等式

   f ( x ) 、 g ( x ) ∈ C [ a , b ] f(x)、g(x)\in C[a,b] f(x)g(x)C[a,b],则
[ ∫ a b f ( x ) g ( x ) d x ] 2 ⩽ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x \bigg[\int^b_af(x)g(x)\text{d}x\bigg]^2\leqslant \int_a^b f^2(x)\text{d}x\cdot\int_a^b g^2(x)\text{d}x [abf(x)g(x)dx]2abf2(x)dxabg2(x)dx

  记忆口诀:积的平方小于等于平方的积.

  附 (柯西不等式一般形式)

∑ i = 1 n a i 2 ⋅ ∑ i = 1 n b i 2 ⩾ ( ∑ i = 1 n a i b i ) 2 \sum\limits^{n}_{i=1}a_i^2\cdot\sum\limits^{n}_{i=1}b_i^2\geqslant\bigg(\sum\limits^{n}_{i=1}{a_ib_i}\bigg)^2 i=1nai2i=1nbi2(i=1naibi)2

    等号成立条件为: a 1 b 1 = a 2 b 2 = . . . = a n b n \frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n} b1a1=b2a2=...=bnan,或   a i \,a_i ai b i    ( i = 1 , 2 , . . . , n )   b_i\;(i=1,2,...,n)\, bi(i=1,2,...,n)中至少有一方全为   0 \,0 0.

(二) 特殊性质
对称区间的定积分性质

   f ( x ) ∈ C [ − a , a ] f(x)\in C[-a,a] f(x)C[a,a],则
∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x . \int^a_{-a}f(x)\text{d}x=\int^a_0[f(x)+f(-x)]\text{d}x. aaf(x)dx=0a[f(x)+f(x)]dx.

  特别地,

    (1) 若   f ( x ) = − f ( − x ) \,f(x)=-f(-x) f(x)=f(x),则   ∫ − a a f ( x ) d x = 0 \,\int_{-a}^af(x)\text{d}x=0 aaf(x)dx=0

    (2) 若   f ( x ) = f ( − x ) \,f(x)=f(-x) f(x)=f(x),则   ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \,\int_{-a}^af(x)\text{d}x=2\int_0^af(x)\text{d}x aaf(x)dx=20af(x)dx.

三角函数的定积分性质

  (1) sin x   \text{sin}x\, sinx   cos x   \,\text{cos}x\, cosx互换性质
     f ( x ) ∈ C [ 0 , 1 ] f(x)\in C[0,1] f(x)C[0,1],则
  ∫ 0 π 2 f ( sin x ) d x = ∫ 0 π 2 f ( cos x ) d x . \,\int_0^{\frac{\pi}{2}}f(\text{sin}x)\text{d}x=\int^{\frac{\pi}{2}}_0f(\text{cos}x)\text{d}x. 02πf(sinx)dx=02πf(cosx)dx.

∫ 0 π 2 lnsin x d x = ∫ 0 π 2 lncos x d x \int^\frac{\pi}{2}_0\text{ln}\text{sin}x\text{d}x=\int^{\frac{\pi}{2}}_0\text{ln}\text{cos}x\text{d}x 02πlnsinxdx=02πlncosxdx

    特别地, I n = ∫ 0 π 2 sin n x d x = ∫ 0 π 2 cos n x d x I_n=\int_0^{\frac{\pi}{2}}\text{sin}^nx\text{d}x=\int_0^{\frac{\pi}{2}}\text{cos}^nx\text{d}x In=02πsinnxdx=02πcosnxdx,且   { I n = n − 1 n I n − 2 I 0 = π 2 I 1 = 1 \,\begin{cases}I_n=\frac{n-1}{n}I_{n-2}\\I_0=\frac{\pi}{2}\\I_1=1\end{cases} In=nn1In2I0=2πI1=1

  计算举例
∫ 0 π 2 sin 4 x d x = 3 4 ⋅ 1 2 ⋅ π 2 = 3 π 16 \int^\frac{\pi}{2}_0\text{sin}^4{x}\text{d}x=\frac{3}{4}\cdot\frac{1}{2}\cdot\frac{\pi}{2}=\frac{3\pi}{16} 02πsin4xdx=43212π=163π ∫ 0 π 2 sin 5 x d x = 4 5 ⋅ 2 3 ⋅ 1 = 8 15 \int^\frac{\pi}{2}_0\text{sin}^5{x}\text{d}x=\frac{4}{5}\cdot\frac{2}{3}\cdot 1=\frac{8}{15} 02πsin5xdx=54321=158

  (2) 2倍性质

    对于   sin x \,\text{sin}x sinx
∫ 0 π f ( sin x ) d x = 2 ∫ 0 π 2 f ( sin x ) d x \int_0^{\pi}f(\text{sin}x)\text{d}x=2\int_0^{\frac{\pi}{2}}f(\text{sin}x)\text{d}x 0πf(sinx)dx=202πf(sinx)dx ∫ 0 π 2 f ( sin x ) d x = ∫ π 2 π f ( sin x ) d x \int_0^{\frac{\pi}{2}}f(\text{sin}x)\text{d}x=\int_{\frac{\pi}{2}}^{\pi}f(\text{sin}x)\text{d}x 02πf(sinx)dx=2ππf(sinx)dx

      特别地,
∫ 0 π sin n x d x = 2 ∫ 0 π 2 sin n x d x = 2 I n \int_0^{\pi}\text{sin}^nx\text{d}x=2\int_0^{\frac{\pi}{2}}\text{sin}^nx\text{d}x=2I_n 0πsinnxdx=202πsinnxdx=2In

    对于   cos x \,\text{cos}x cosx
∫ 0 π f ( ∣ cos x ∣ ) d x = 2 ∫ 0 π 2 f ( cos x ) d x \int_0^{\pi}f(|\text{cos}x|)\text{d}x=2\int_0^{\frac{\pi}{2}}f(\text{cos}x)\text{d}x 0πf(cosx)dx=202πf(cosx)dx

      特别地,
∫ 0 π cos n x d x = { 2 ∫ 0 π 2 cos n x d x = 2 I n ,        n = 2 , 4 , 6 , . . . 0 ,        n = 1 , 3 , 5 , . . . \int_0^{\pi}\text{cos}^nx\text{d}x=\begin{cases}2\int_0^{\frac{\pi}{2}}\text{cos}^nx\text{d}x=2I_n,\;\;\;n=2,4,6,...\\0,\;\;\;n=1,3,5,...\end{cases} 0πcosnxdx={202πcosnxdx=2Inn=2,4,6,...0,n=1,3,5,...

  (3)   x   \,x\, x性质
     f ( x ) ∈ C [ 0 , 1 ] f(x)\in C[0,1] f(x)C[0,1],则
∫ 0 π x f ( sin x ) d x = π 2 ∫ 0 π f ( sin x ) d x = π ∫ 0 π 2 f ( sin x ) d x \int_0^\pi xf(\text{sin}x)\text{d}x=\frac{\pi}{2}\int^\pi_0f(\text{sin}x)\text{d}x=\pi\int^{\frac{\pi}{2}}_0f(\text{sin}x)\text{d}x 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx

    注意:式中出现   cos x   \,\text{cos}{x}\, cosx:只要   cos x   \,\text{cos}{x}\, cosx带绝对值或为偶次项,则上面的性质同样满足.

  (4) 2 π   \pi\, π绝对值性质
∫ 0 2 π f ( ∣ sin x ∣ ) d x = 4 ∫ 0 π 2 f ( sin x ) d x \int^{2\pi}_0f(|\text{sin}x|)\text{d}x=4\int^{\frac{\pi}{2}}_0f(\text{sin}x)\text{d}x 02πf(sinx)dx=402πf(sinx)dx ∫ 0 2 π f ( ∣ cos x ∣ ) d x = 4 ∫ 0 π 2 f ( cos x ) d x \int^{2\pi}_0f(|\text{cos}x|)\text{d}x=4\int^{\frac{\pi}{2}}_0f(\text{cos}x)\text{d}x 02πf(cosx)dx=402πf(cosx)dx

周期函数定积分性质

  设   f ( x )   \,f(x)\, f(x)是以   T   \,T\, T为周期的连续函数,则

    (1) 平移性质
∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int^{a+T}_af(x)\text{d}x=\int^T_0f(x)\text{d}x aa+Tf(x)dx=0Tf(x)dx

      注意:平移位置根据需求任意选择.

    (2) n倍性质
∫ a n T f ( x ) d x = n ∫ 0 T f ( x ) d x \int^{nT}_af(x)\text{d}x=n\int^T_0f(x)\text{d}x anTf(x)dx=n0Tf(x)dx

4 积分区间变换技巧

  (1) 最简单的变换:
∫ − a 0 f ( x ) d x = x = − t ∫ a 0 f ( − t ) d ( − t ) = ∫ 0 a f ( − t ) d t \int^0_{-a}f(x)\text{d}x\xlongequal{\color{Blue}x=-t}\int^0_{a}f(-t)\text{d}(-t)=\int^a_0f(-t)\text{d}t a0f(x)dxx=t a0f(t)d(t)=0af(t)dt

  (2) 证明定积分相等,且定积分区间相同:
∫ a b f ( x ) d x = x + t = a + b ∫ b a f ( a + b − t ) d ( a + b − t ) = ∫ a b f ( a + b − t ) d t \int^b_{a}f(x)\text{d}x\xlongequal{\color{Blue}x+t=a+b}\int^a_bf(a+b-t)\text{d}(a+b-t)=\int^b_af(a+b-t)\text{d}t abf(x)dxx+t=a+b baf(a+bt)d(a+bt)=abf(a+bt)dt

  (3) 0-1变换,证明定积分相等,且另一个定积分积分区间是   [ 0 , 1 ] \,[0,1] [0,1]
∫ a b f ( x ) d x = x = a + ( b − a ) t ( b − a ) ∫ 0 1 f [ a + ( b − a ) t ] d t \int^b_af(x)\text{d}x\xlongequal{\color{Blue}x=a+(b-a)t}(b-a)\int^1_0f[a+(b-a)t]\text{d}t abf(x)dxx=a+(ba)t (ba)01f[a+(ba)t]dt

  (4) 三角函数变换:
     π   \pi\, π型:通过该变换,可实现区间的平移,方便使用特殊性质. 可证明   ∫ 0 π x f ( sin x ) d x   \,\int^{\pi}_0xf(\text{sin}x)\text{d}x\, 0πxf(sinx)dx的特殊性质:
∫ π 2 3 π 2 f ( cos x ) d x = x − π = t ∫ − π 2 π 2 f ( cos t ) d t = 2 ∫ 0 π 2 f ( cos t ) d t \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}f(\text{cos}x)\text{d}x\xlongequal{x-{\color{Blue}\pi}=t}\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}f(\text{cos}t)\text{d}t=2\int^{\frac{\pi}{2}}_0f(\text{cos}t)\text{d}t 2π23πf(cosx)dxxπ=t 2π2πf(cost)dt=202πf(cost)dt

     π 2   \frac{\pi}{2}\, 2π型:通过该变换,可实现被积函数中   sin x   \,\text{sin}x\, sinx   cos x   \,\text{cos}x\, cosx   tan x   \,\text{tan}x\, tanx   cot x   \,\text{cot}x\, cotx的转换:
∫ 0 π f ( cos x ) d x = x = π 2 − t ∫ π 2 − π 2 f ( sin t ) ( − d t ) = ∫ − π 2 π 2 f ( sin t ) d t \int_0^{\pi}f(\text{cos}x)\text{d}x\xlongequal{x={\color{Blue}\frac{\pi}{2}}-t}\int^{-\frac{\pi}{2}}_{\frac{\pi}{2}}f(\text{sin}t)(-\text{d}t)=\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}f(\text{sin}t)\text{d}t 0πf(cosx)dxx=2πt 2π2πf(sint)(dt)=2π2πf(sint)dt

5 定积分的积分方法

(一) 换元积分法

  与不定积分一致.

  注意
    (1) 特别强调下面这种基本构造手法,应当非常熟练:
∫ 0 2 x 2 2 x − x 2 d x = ∫ 0 2 [ ( x − 1 ) + 1 ] 2 1 − ( x − 1 ) 2 d ( x − 1 ) \int^2_0x^2\sqrt{2x-x^2}\text{d}x=\int^2_0[(x-1)+1]^2\sqrt{1-(x-1)^2}\text{d}(x-1) 02x22xx2 dx=02[(x1)+1]21(x1)2 d(x1) ∫ 0 1 x arctan ( x − 1 ) 2 d x = ∫ 0 1 ( x − 1 ) arctan ( x − 1 ) 2 d ( x − 1 ) + ∫ 0 1 arctan ( x − 1 ) 2 d ( x − 1 ) \int^1_0x\text{arctan}(x-1)^2\text{d}x=\int^1_0(x-1)\text{arctan}(x-1)^2\text{d}(x-1)+\int^1_0\text{arctan}(x-1)^2\text{d}(x-1) 01xarctan(x1)2dx=01(x1)arctan(x1)2d(x1)+01arctan(x1)2d(x1)

    (2) 同不定积分,当分母次数高,分子次数低(通常为1)时,要考虑倒代换.

(二) 分部积分法

  与不定积分一致.

(三) 根据几何意义

  定积分的几何意义:定积分等于被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负.

  尤其是圆相关的积分,直接看圆的面积计算更快 (可以避免三角代换),如: ∫ 0 2 2 x − x 2 d x \int^2_0\sqrt{2x-x^2}\text{d}x 022xx2 dx

   y = 2 x − x 2   y=\sqrt{2x-x^2}\, y=2xx2 围成面积为一个半径为   1   \,1\, 1的半圆,所以   ∫ 0 2 2 x − x 2 d x = π 2 \,\int^2_0\sqrt{2x-x^2}\text{d}x=\frac{\pi}{2} 022xx2 dx=2π.

(四) 区间再现公式

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int^b_af(x)\text{d}x=\int^b_af(a+b-x)\text{d}x abf(x)dx=abf(a+bx)dx

6 其他重要技巧

(1) 分母有理化

  分母有理化在积分中依然有用武之地:
∫ − 1 1 x x + x 2 + 1 d x = ∫ − 1 1 x ( x 2 + 1 − x ) ( x 2 + 1 + x ) ( x 2 + 1 − x ) d x \int^{1}_{-1}\frac{x}{x+\sqrt{x^2+1}}\text{d}x=\int^1_{-1}\frac{x(\sqrt{x^2+1}-x)}{(\sqrt{x^2+1}+x)(\sqrt{x^2+1}-x)}\text{d}x 11x+x2+1 xdx=11(x2+1 +x)(x2+1 x)x(x2+1 x)dx

(2) 拆积分限

  极其重要的手法,一旦定积分出现   n   \,n\, n、出现   Σ   \,\Sigma\, Σ都要考虑是否需要拆.
  拆开以后逐段考虑.
∫ 0 n π x ∣ cos x ∣ d x = ∫ 0 π x ∣ cos x ∣ d x + ∫ π 2 π ∣ cos x ∣ d x + . . . + ∫ ( n − 1 ) π n π ∣ cos x ∣ d x \int^{n\pi}_0x|\text{cos}x|\text{d}x=\int^\pi_0x|\text{cos}x|\text{d}x+\int_\pi^{2\pi}|\text{cos}x|\text{d}x+...+\int_{(n-1)\pi}^{n\pi}|\text{cos}x|\text{d}x 0nπxcosxdx=0πxcosxdx+π2πcosxdx+...+(n1)πnπcosxdx ∫ 0 a f ( x ) d x − a ∫ 0 1 f ( x ) d x = ( 1 − a ) ∫ 0 a f ( x ) d x − a ∫ a 1 f ( x ) d x \int^a_0f(x)\text{d}x-a\int^1_0f(x)\text{d}x=(1-a)\int^a_0f(x)\text{d}x-a\int^1_af(x)\text{d}x 0af(x)dxa01f(x)dx=(1a)0af(x)dxaa1f(x)dx

(3) 定积分+非定积分

  一个式子出现一项是定积分,另一项不含定积分,有以下两种处理思路:

    (1) 都化为定积分:
∫ a x f ( t ) d t − ( x − a ) f ( a ) = ∫ a x f ( t ) d t − ∫ a x f ( a ) d t = ∫ a x [ f ( t ) − f ( a ) ] d t \int^x_af(t)\text{d}t-(x-a)f(a)=\int^x_af(t)\text{d}t-\int^x_af(a)\text{d}t=\int^x_a\big[f(t)-f(a)\big]\text{d}t axf(t)dt(xa)f(a)=axf(t)dtaxf(a)dt=ax[f(t)f(a)]dt
    (2) 都化为不含定积分的项 (积分中值定理):
1 b − a ∫ a b f ( x ) d x − f ( c ) = f ( ξ ) − f ( c ) , ξ ∈ [ a , b ] \frac{1}{b-a}\int^b_af(x)\text{d}x-f(c)=f(\xi)-f(c),\xi\in[a,b] ba1abf(x)dxf(c)=f(ξ)f(c)ξ[a,b]

(4) 证明定积分遇到绝对值

  应当条件反射:
∣ ∫ a b f ( x ) d x ∣ ⩽ ∫ a b ∣ f ( x ) ∣ d x \bigg|\int^b_af(x)\text{d}x\bigg|\leqslant\int^b_a\big|f(x)\big|\text{d}x abf(x)dxabf(x)dx

(5) 积分过程发现与原式相同的项

  立即设   I =   \,\text{I}=\, I=原式,然后移项求解.

(6) 周期函数相关总结

  1. 三角函数周期 (只讨论   sin x   \,\text{sin}x\, sinx   cos x   \,\text{cos}x\, cosx) 的性质
    (1) sin n x   \text{sin}^nx\, sinnx   cos n x   \,\text{cos}^nx\, cosnx的周期:
      当   n   \,n\, n为奇数时,周期为   2 π \,2π 2π
      当   n   \,n\, n为偶数时,周期为   π \,π π.
    (2) sin ω x \text{sin}\omega x sinωx cos ω x \text{cos}\omega x cosωx的周期为   2 π ω \,\frac{2\pi}{\omega} ω2π.
    (3) 一次正余弦加绝对值周期减半: ∣ sin ω x ∣ |\text{sin}\omega x| sinωx ∣ cos ω x ∣ |\text{cos}\omega x| cosωx的周期为 π ω \frac{\pi}{\omega} ωπ.
    (4) 有的时候周期不是那么显而易见,但是熟悉周期函数的性质 ( f ( x ) = f ( x + T ) f(x)=f(x+T) f(x)=f(x+T))也能很容易看出,如:
       f ( x ) = e sin x f(x)=e^{\text{sin}x} f(x)=esinx f ( x + 2 π ) = e sin ( x + 2 π ) = e sin x f(x+2\pi)=e^{\text{sin}(x+2\pi)}=e^{\text{sin}x} f(x+2π)=esin(x+2π)=esinx,周期还是   2 π \,2\pi 2π
      可见   e   \,e\, e的三角函数次幂的周期性等于三角函数的周期;
       f ( x ) = sin 2 x − sin 4 x f(x)=\sqrt{\text{sin}^2x-\text{sin}^4x} f(x)=sin2xsin4x ,显然   sin 2 x   \,\text{sin}^2x\, sin2x   sin 4 x   \,\text{sin}^4x\, sin4x周期都是   π   \,\pi\, π,根据   f ( x ) = f ( x + π ) \,f(x)=f(x+\pi) f(x)=f(x+π),周期还是   π   \,\pi\, π
      可见一个由三角函数构成的多项式,只要其中每一项的周期都一致,那么开根号不会影响周期.

  2. 解答题中经常使用的结论:
    对    ∀   x \;\forall\,x x,都存在非负整数   n   \,n\, n,使得   n T ⩽ x ⩽ ( n + 1 ) T \,\color{Blue}nT\leqslant x\leqslant(n+1)T nTx(n+1)T.
    尤其是题目出现下面这种极限,多半就要使用上面的结论并运用夹逼定理求解:
lim ⁡ x → + ∞ ∫ 0 x f ( t ) d t x \lim\limits_{x\to+\infty}{\frac{\int_0^xf(t)\text{d}t}{x}} x+limx0xf(t)dt

    若周期函数 f ( x ) ⩾ 0 f(x)\geqslant0 f(x)0
n ∫ 0 T f ( x ) d x ⩽ ∫ 0 x f ( x ) d x ⩽ ( n + 1 ) ∫ 0 T f ( x ) d x n\int^{T}_0f(x)\text{d}x\leqslant\int^x_0f(x)\text{d}x\leqslant(n+1)\int^{T}_0f(x)\text{d}x n0Tf(x)dx0xf(x)dx(n+1)0Tf(x)dx

    若 f ( x ) ⩽ 0 f(x)\leqslant0 f(x)0
n ∫ 0 T f ( x ) d x ⩾ ∫ 0 x f ( x ) d x ⩾ ( n + 1 ) ∫ 0 T f ( x ) d x n\int^T_0f(x)\text{d}x\geqslant\int^x_0f(x)\text{d}x\geqslant(n+1)\int^{T}_0f(x)\text{d}x n0Tf(x)dx0xf(x)dx(n+1)0Tf(x)dx

  3. 既是奇函数又是周期函数的函数,每个周期内积分必为0.

(7) 变积分限函数前面有分式

  在对带变积分限函数的方程两边求导时,必须保证变积分限函数前面没有下面这种带   x   \,x\, x分式:
f ( x ) − 1 x + 1 ∫ 0 x t f ( t ) d t = 1 f(x)-\frac{1}{x+1}\int^x_0tf(t)\text{d}t=1 f(x)x+110xtf(t)dt=1

  必须先两边乘以   x + 1 \,x+1 x+1,否则变积分限函数永远清理不掉.

7 反常积分 (广义积分)

  概念
    不满足可积条件的积分.

  满足下列条件之一 f ( x )   f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上可积:
    1. f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b].
    2. f ( x )   f(x)\, f(x)有界且在   [ a , b ]   \,[a,b]\, [a,b]上存在有限个间断点 (即不含无穷间断点,可能含有第一类间断点或振荡间断点).
    3. f ( x )   f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上单调.

    注意:由可积条件可知,并非有间断点就是反常积分!

  所有情况一览

{ 区 间 无 限 { ( a , + ∞ ) ( − ∞ , a ) ( − ∞ , + ∞ ) 区 间 有 限 ( 无 界 函 数 ) { ( a , b ] [ a , b ) [ a , c ) ∪ ( c , b ] \begin{cases}区间无限\begin{cases}(a,+\infty)\\(-\infty,a)\\(-\infty,+\infty)\end{cases}\\ 区间有限(无界函数)\begin{cases}(a,b]\\{[a,b)}\\{[a,c)\cup(c,b]}\end{cases}\end{cases} (a,+)(,a)(,+)()(a,b][a,b)[a,c)(c,b]

(一) Γ   \Gamma\, Γ函数

Γ ( α ) = ∫ 0 + ∞ x α − 1 e − x d x \Gamma(\alpha)=\int^{+\infty}_0x^{\alpha-1}e^{-x}\text{d}x Γ(α)=0+xα1exdx

  三个重要性质

Γ ( α + 1 ) = α ⋅ Γ ( α ) \Gamma(\alpha+1)=\alpha\cdot\Gamma{(\alpha)} Γ(α+1)=αΓ(α) Γ ( n + 1 ) = n ! \Gamma(n+1)=n! Γ(n+1)=n! Γ ( 1 2 ) = π \Gamma(\frac{1}{2})=\sqrt{\pi} Γ(21)=π

  举例:
∫ 0 + ∞ x 5 e − x d x = Γ ( 6 ) = 5 ! \int^{+\infty}_0x^{{\color{Red}5}}e^{-x}\text{d}x=\Gamma({\color{Blue}6})={\color{Red}5}! 0+x5exdx=Γ(6)=5! ∫ 0 + ∞ x e − x d x = Γ ( 3 2 ) = 1 2   Γ ( 1 2 ) = π 2 \int^{+\infty}_0\sqrt{x}e^{-x}\text{d}x=\Gamma(\frac{3}{2})=\frac{1}{2}\,\Gamma(\frac{1}{2})=\frac{\sqrt{\pi}}{2} 0+x exdx=Γ(23)=21Γ(21)=2π ∫ 0 + ∞ x 3 2 e − x d x = Γ ( 5 2 ) = Γ ( 1 + 3 2 ) = 3 2 Γ ( 1 + 1 2 ) = 3 2 ⋅ 1 2 Γ ( 1 2 ) = 3 4 π \int^{+\infty}_0x^{\frac{3}{2}}e^{-x}\text{d}x=\Gamma(\frac{5}{2})=\Gamma(1+\frac{3}{2})=\frac{3}{2}\Gamma(1+\frac{1}{2})=\frac{3}{2}\cdot\frac{1}{2}\Gamma(\frac{1}{2})=\frac{3}{4}\pi 0+x23exdx=Γ(25)=Γ(1+23)=23Γ(1+21)=2321Γ(21)=43π

(二) 无穷限积分 (积分区间无限)

  设   ∫ a b f ( x ) d x = F ( b ) − F ( a ) \,\int_a^bf(x)\text{d}x=F(b)-F(a) abf(x)dx=F(b)F(a)

1 f ( x )   f(x)\, f(x)   [ a , + ∞ )   \,[a,+\infty)\, [a,+)上连续

  (1) 定义
    收敛:若   lim ⁡ b → + ∞ [ F ( b ) − F ( a ) ] = A \,\lim\limits_{b\to+\infty}[F(b)-F(a)]=A b+lim[F(b)F(a)]=A,则反常积分 ∫ a + ∞ f ( x ) d x = A \int_a^{+\infty}f(x)\text{d}x=A a+f(x)dx=A,收敛.
    发散:若   lim ⁡ b → + ∞ [ F ( b ) − F ( a ) ]   \,\lim\limits_{b\to+\infty}[F(b)-F(a)]\, b+lim[F(b)F(a)]不存在,则反常积分 ∫ a + ∞ f ( x ) d x   \int_a^{+\infty}f(x)\text{d}x\, a+f(x)dx发散.

  (2) 判别法
lim ⁡ x → + ∞ x α f ( x ) = C 0    ( ≠ 0 ) { α > 1 , 收 敛 α ⩽ 1 , 发 散 \lim\limits_{x\to+\infty}x^\alpha f(x)=C_0\;(\neq 0)\begin{cases}\alpha>1,收敛 \\\alpha\leqslant1,发散\end{cases} x+limxαf(x)=C0(=0){α>1α1

2 f ( x )   f(x)\, f(x)   ( − ∞ , a ]   \,(-\infty,a]\, (,a]上连续

  (1) 定义
    收敛:若   lim ⁡ b → − ∞ [ F ( b ) − F ( a ) ] = A \,\lim\limits_{b\to-\infty}[F(b)-F(a)]=A blim[F(b)F(a)]=A,则反常积分 ∫ − ∞ a f ( x ) d x = A \int^a_{-\infty}f(x)\text{d}x=A af(x)dx=A,收敛.
    发散:若   lim ⁡ b → − ∞ [ F ( b ) − F ( a ) ]   \,\lim\limits_{b\to-\infty}[F(b)-F(a)]\, blim[F(b)F(a)]不存在,则反常积分 ∫ − ∞ a f ( x ) d x   \int^a_{-\infty}f(x)\text{d}x\, af(x)dx发散.

  (2) 判别法
lim ⁡ x → − ∞ x α f ( x ) = C 0    ( ≠ 0 ) { α > 1 , 收 敛 α ⩽ 1 , 发 散 \lim\limits_{x\to-\infty}x^\alpha f(x)=C_0\;(\neq 0)\begin{cases}\alpha>1,收敛 \\\alpha\leqslant1,发散\end{cases} xlimxαf(x)=C0(=0){α>1α1

3 f ( x )   f(x)\, f(x)   ( − ∞ , + ∞ )   \,(-\infty,+\infty)\, (,+)上连续

  若   ∫ − ∞ a f ( x ) d x \,\int^a_{-\infty}f(x)\text{d}x af(x)dx ∫ a + ∞ f ( x ) d x   \int_a^{+\infty}f(x)\text{d}x\, a+f(x)dx都收敛,则反常积分   ∫ − ∞ + ∞ f ( x ) d x   \,\int^{+\infty}_{-\infty}f(x)\text{d}x\, +f(x)dx收敛,否则发散.

  若   ∫ − ∞ + ∞ f ( x ) d x   \,\int^{+\infty}_{-\infty}f(x)\text{d}x\, +f(x)dx收敛,则存在常数   A \,A A B B B,使得   ∫ − ∞ + ∞ f ( x ) d x = lim ⁡ A → + ∞ B → − ∞ ∫ B A f ( x ) d x ∃ \,\int^{+\infty}_{-\infty}f(x)\text{d}x=\lim\limits_{A\to+\infty\atop B\to -\infty}\int^A_Bf(x)\text{d}x\exist +f(x)dx=BA+limBAf(x)dx.

(三) 瑕积分 (积分区间有限)
1 f ( x )   f(x)\, f(x)   ( a , b ]   \,(a,b]\, (a,b]上连续,在   x = a   \,x=a\, x=a的右邻域内无界

  设   ϵ > 0 \,\epsilon>0 ϵ>0   ∫ a + ϵ b f ( x ) d x = F ( b ) − F ( a + ϵ ) \,\int_{a+\epsilon}^{b}f(x)\text{d}x=F(b)-F(a+\epsilon) a+ϵbf(x)dx=F(b)F(a+ϵ)

  (1) 定义
    收敛:若   lim ⁡ ϵ → 0 + [ F ( b ) − F ( a + ϵ ) ] = A \,\lim\limits_{\epsilon\to 0^+}[F(b)-F(a+\epsilon)]=A ϵ0+lim[F(b)F(a+ϵ)]=A,则反常积分 ∫ b a f ( x ) d x = A \int^a_{b}f(x)\text{d}x=A baf(x)dx=A,收敛.
    发散:若   lim ⁡ ϵ → 0 + [ F ( b ) − F ( a + ϵ ) ]   \,\lim\limits_{\epsilon\to 0^+}[F(b)-F(a+\epsilon)]\, ϵ0+lim[F(b)F(a+ϵ)]不存在,则反常积分 ∫ b a f ( x ) d x   \int^a_{b}f(x)\text{d}x\, baf(x)dx发散.

  (2) 判别法
lim ⁡ x → a + ( x − a ) α f ( x ) = C 0    ( ≠ 0 ) { α < 1 , 收 敛 α ⩾ 1 , 发 散 \lim\limits_{x\to a^+}(x-a)^\alpha f(x)=C_0\;(\neq 0)\begin{cases}\alpha<1,收敛 \\\alpha\geqslant1,发散\end{cases} xa+lim(xa)αf(x)=C0(=0){α<1α1

  区间不能取到的端点(该点函数极限无穷)称为瑕点,带瑕点的反常积分称为瑕积分.

2 f ( x )   f(x)\, f(x)   [ a , b )   \,[a,b)\, [a,b)上连续,在   x = b   \,x=b\, x=b的左邻域内无界

  设   ϵ > 0 \,\epsilon>0 ϵ>0   ∫ a b − ϵ f ( x ) d x = F ( b − ϵ ) − F ( a ) \,\int_{a}^{b-\epsilon}f(x)\text{d}x=F(b-\epsilon)-F(a) abϵf(x)dx=F(bϵ)F(a)

  (1) 定义
    收敛:若   lim ⁡ ϵ → 0 + [ F ( b − ϵ ) − F ( a ) ] = A \,\lim\limits_{\epsilon\to 0^+}[F(b-\epsilon)-F(a)]=A ϵ0+lim[F(bϵ)F(a)]=A,则反常积分 ∫ b a f ( x ) d x = A \int^a_{b}f(x)\text{d}x=A baf(x)dx=A,收敛.
    发散:若   lim ⁡ ϵ → 0 + [ F ( b − ϵ ) − F ( a ) ]   \,\lim\limits_{\epsilon\to 0^+}[F(b-\epsilon)-F(a)]\, ϵ0+lim[F(bϵ)F(a)]不存在,则反常积分 ∫ b a f ( x ) d x   \int^a_{b}f(x)\text{d}x\, baf(x)dx发散.

  (2) 判别法
lim ⁡ x → b − ( b − x ) α f ( x ) = C 0    ( ≠ 0 ) { α < 1 , 收 敛 α ⩾ 1 , 发 散 \lim\limits_{x\to b^-}(b-x)^\alpha f(x)=C_0\;(\neq 0)\begin{cases}\alpha<1,收敛 \\\alpha\geqslant1,发散\end{cases} xblim(bx)αf(x)=C0(=0){α<1α1

3 f ( x )   f(x)\, f(x)   [ a , c ) ∪ ( c , b ]   \,[a,c)\cup(c,b]\, [a,c)(c,b]上连续,在   x = c   \,x=c\, x=c的去心领域内无界

  若   ∫ a c f ( x ) d x \,\int_{a}^{c}f(x)\text{d}x acf(x)dx ∫ c b f ( x ) d x   \int_{c}^{b}f(x)\text{d}x\, cbf(x)dx都收敛时,则反常积分   ∫ b a f ( x ) d x   \,\int^{a}_{b}f(x)\text{d}x\, baf(x)dx收敛,且
∫ b a f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int^{a}_{b}f(x)\text{d}x=\int_{a}^{c}f(x)\text{d}x+\int_{c}^{b}f(x)\text{d}x baf(x)dx=acf(x)dx+cbf(x)dx

  否则发散.

(四) 反常积分敛散性判别技巧
预备知识

  无穷小与无穷大的关系
    (1) 无穷小的倒数是无穷大(趋近于   0   \,0\, 0的过程不等于   0   \,0\, 0),无穷大的倒数是无穷小;

    (2) A   A\, A   B   \,B\, B都是无穷大,且   A   \,A\, A趋于无穷大的速度比   B   \,B\, B快,那么   1 A   \,\frac{1}{A}\, A1趋近于   0   \,0\, 0的速度就比   1 B   \,\frac{1}{B}\, B1快;

   A   A\, A是比   B   \,B\, B更高阶的无穷大   ⇒   \,\Rightarrow\, 1 A   \frac{1}{A}\, A1是比   1 B   \,\frac{1}{B}\, B1更高阶的无穷大.

    (3) A   A\, A   B   \,B\, B都是无穷小,且   A   \,A\, A趋于无穷小的速度比   B   \,B\, B快,趋近于   0   \,0\, 0的过程   A B ≠ 0 \,AB\neq 0 AB=0,那么   1 A   \,\frac{1}{A}\, A1趋近于无穷大的速度就比   1 B   \,\frac{1}{B}\, B1快.

   A   A\, A是比   B   \,B\, B更高阶的无穷小   ⇒   \,\Rightarrow\, 1 A   \frac{1}{A}\, A1是比   1 B   \,\frac{1}{B}\, B1更高阶的无穷小.

   ln x   \text{ln}x\, lnx任意次幂比牛还慢的两个重要结论
     x → 0 + x\to 0^+ x0+时, ln x   \text{ln}x\, lnx趋近于无穷的速度比   1 x   \,\frac{1}{x}\, x1的任意次幂都要慢;
     x → + ∞   x\to +\infty\, x+时, ln x   \text{ln}x\, lnx趋近于无穷的速度比   x   \,x\, x的任意次幂都要慢;

(1) 三种基本反常积分 (可以直接积出来)

  以下三种反常积分通过直接积出来的办法可以直接检验是否收敛,使用频繁,需要记忆.

  (1) 无穷限积分
∫ a + ∞ d x x p = { 发 散 , 0 < p ⩽ 1 , 收 敛 , p > 1.      ( a > 0 ,   p > 0 ) \int^{+\infty}_a\frac{\text{d}x}{x^p}= \begin{cases}发散,&0<p\leqslant 1,\\ 收敛,&p>1. \end{cases}\;\;(a>0,\,p>0) a+xpdx={,,0<p1,p>1.(a>0,p>0)

  理解:积分区间延展到无穷,要想收敛,被积函数就要尽可能小,即   p   \,p\, p要尽可能大. 记住这个界限是   1   \,1\, 1.

  (2) 瑕积分
∫ a b d x ( x − a ) q = { 发 散 , q ⩾ 1 , 收 敛 , 0 < q < 1.      ( q > 0 ) \int^{b}_a\frac{\text{d}x}{(x-a)^q}= \begin{cases}发散,&q\geqslant1,\\ 收敛,&0<q<1. \end{cases}\;\;(q>0) ab(xa)qdx={,,q1,0<q<1.(q>0)

  理解:瑕积分是某点 ( x = a x=a x=a) 的函数值趋近于无穷,要想收敛,同样要使被积函数尽可能小,当   x → a   \,x\to a\, xa时, ( x − a )   (x-a)\, (xa)是一个很小的数,所以   q   \,q\, q也要尽可能小. 记住这个界限是   1   \,1\, 1.

  为帮助记忆以上结论,可以通俗理解为:“大的喜欢大的,小的喜欢小的”,并且   p   \,p\, p   q   \,q\, q等于   1 \,1 1,积分发散.

  “大的喜欢大的,小的喜欢小的”:上面的无穷限积分区间很大,就要   p   \,p\, p足够大,而上面的瑕积分区间小,就要   q   \,q\, q足够小.

  (3) 无穷限积分 (带   ln ⁡ \,\ln ln)
∫ a + ∞ d x x p ln q x = { 收 敛 , p > 1 , 收 敛 , p = 1   且   q > 1 , 发 散 , p = 1   且   q ⩽ 1 , 发 散 , p < 1.      ( a > 1 ) \int^{+\infty}_a\frac{\text{d}x}{x^p\text{ln}^qx}= \begin{cases}收敛,&p>1,\\ 收敛,&p=1\,且\,q>1,\\ 发散,&p=1\,且\,q\leqslant1,\\ 发散,&p<1.\\ \end{cases}\;\;(a>1) a+xplnqxdx=,,,,p>1,p=1q>1,p=1q1,p<1.(a>1)

  理解:类比第   ( 1 )   \,(1)\, (1)种反常积分,也是需要让分母足够小,即   p   \,p\, p   q   \,q\, q足够大. 现在是   p   \,p\, p   q   \,q\, q共同控制积分的敛散性. 指数函数比对数函数决定权更大. 当   p > 1   \,p>1\, p>1时,无论如何积分都收敛. 当   p = 1   \,p=1\, p=1时情况比较特殊,需要额外考虑   q   \,q\, q的大小来决定敛散性,当   p < 1   \,p<1\, p<1时,无论如何积分都发散.

(2) 找等价或同阶无穷小

  定理1 (用于判别无穷限积分):
    设函数   f ( x )   \,f(x)\, f(x)在区间   [ a ,   + ∞ )   \,[a,\,+\infty)\, [a,+)上连续,且   f ( x ) ⩾ 0 \,f(x)\geqslant0 f(x)0. 若存在常数   p > 1 \,p>1 p>1,使得   lim ⁡ x → + ∞ x p f ( x )   \,\lim\limits_{x\to+\infty}x^p f(x)\, x+limxpf(x)存在,那么反常积分   ∫ a + ∞ f ( x ) d x   \,\int^{+\infty}_af(x)\text{d}x\, a+f(x)dx收敛;如果   lim ⁡ x → + ∞ x f ( x ) = d > 0   \,\lim\limits_{x\to+\infty}x f(x)=d>0\, x+limxf(x)=d>0(或   d = + ∞ \,d=+\infty d=+),反常积分发散.

  定理1使用
    (1) 相当于找   x → ∞   \,x\to\infty\, x时,被积函数   f ( x )   \,f(x)\, f(x)等价或同阶无穷小   1 x p \,\frac{1}{x^p} xp1 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)\text{d}x a+f(x)dx ∫ a + ∞ 1 x p d x   \int_a^{+\infty}\frac{1}{x^p}\text{d}x\, a+xp1dx同敛散,而后者是三种常见反常积分的第一种,很好判断.
    (2) 若找不到同阶无穷小,还可用比较的方法. 假设能找到比   f ( x )   \,f(x)\, f(x)更高阶无穷小   1 x p \,\frac{1}{x^p} xp1(趋近于   0   \,0\, 0的速度比   f ( x )   \,f(x)\, f(x)快),若   ∫ a + ∞ 1 x p d x   \,\int_a^{+\infty}\frac{1}{x^p}\text{d}x\, a+xp1dx发散,那么   ∫ a + ∞ f ( x ) d x   \,\int_a^{+\infty}f(x)\text{d}x\, a+f(x)dx也发散. 同样,若能找到比   f ( x )   \,f(x)\, f(x)更低阶无穷小   1 x p \,\frac{1}{x^p} xp1(趋近于   0   \,0\, 0的速度比   f ( x )   \,f(x)\, f(x)慢),若   ∫ a + ∞ 1 x p d x   \,\int_a^{+\infty}\frac{1}{x^p}\text{d}x\, a+xp1dx收敛,那么   ∫ a + ∞ f ( x ) d x   \,\int_a^{+\infty}f(x)\text{d}x\, a+f(x)dx也收敛.

  定理2 (用于判别瑕积分):
    设函数   f ( x )   \,f(x)\, f(x)在区间   ( a ,   b ]   \,(a,\,b]\, (a,b]上连续,且   f ( x ) ⩾ 0 \,f(x)\geqslant0 f(x)0. x = a   x=a\, x=a   f ( x )   \,f(x)\, f(x)的瑕点. 若存在常数   0 < q < 1 \,0<q<1 0<q<1,使得   lim ⁡ x → + ∞ ( x − a ) q f ( x )   \,\lim\limits_{x\to+\infty}(x-a)^q f(x)\, x+lim(xa)qf(x)存在,那么反常积分   ∫ a b f ( x ) d x   \,\int^{b}_af(x)\text{d}x\, abf(x)dx收敛;如果   lim ⁡ x → a + ( x − a ) f ( x ) = d > 0   \,\lim\limits_{x\to a^+}(x-a) f(x)=d>0\, xa+lim(xa)f(x)=d>0(或   d = + ∞ \,d=+\infty d=+),反常积分发散.

  定理2使用
    (1) 找到在瑕点附近,被积函数   f ( x )   \,f(x)\, f(x)等价或同阶无穷大. (无穷大的倒数是无穷小,所以相当于找分母的等价或同阶无穷小),二者瑕积分同敛散.
    (2) 找不到同阶无穷大,也可用比较的方法.

(3) 两个瑕点、上下限都是无穷、既有瑕点又是无穷限积分

  思路:选取某些点将反常积分进行拆分,使得每一个积分都可以被单独研究. 该点的选取是随意的.

  例. 设   m \,m m n   n\, n是正整数,判断   m \,m m n   n\, n与下面反常积分敛散性的关系:
∫ 0 1 ln 2 ( 1 − x ) m x n d x \int^1_0\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x 01nx mln2(1x) dx

  解:该积分有两个瑕点 ( x = 0   x=0\, x=0   x = 1 \,x=1 x=1),故先做如下拆分,分开考虑:
∫ 0 1 ln 2 ( 1 − x ) m x n d x = ∫ 0 1 2 ln 2 ( 1 − x ) m x n d x + ∫ 1 2 1 ln 2 ( 1 − x ) m x n d x \int^1_0\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x=\int^\frac{1}{2}_0\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x+\int^1_\frac{1}{2}\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x 01nx mln2(1x) dx=021nx mln2(1x) dx+211nx mln2(1x) dx

  (1) 对于   ∫ 0 1 2 ln 2 ( 1 − x ) m x n d x \,\int^\frac{1}{2}_0\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x 021nx mln2(1x) dx,应当使用定理2进行判断,尝试找被积函数在   x → 0   \,x\to 0\, x0时的等价或同阶无穷大. 先找倒数的无穷小:
x n ln 2 ( 1 − x ) m ∼ x 1 n [ ln ( 1 − x ) ] 2 m ∼ x 1 n x 2 m = x 1 n − 2 m \frac{\sqrt[n]x}{\sqrt[m]{\text{ln}^2(1-x)}}\sim\frac{x^{\frac{1}{n}}}{[\text{ln}(1-x)]^{\frac{2}{m}}}\sim \frac{x^{\frac{1}{n}}}{x^{\frac{2}{m}}}=x^{\frac{1}{n}-\frac{2}{m}} mln2(1x) nx [ln(1x)]m2xn1xm2xn1=xn1m2

    所以 ln 2 ( 1 − x ) m x n   \frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\, nx mln2(1x) 对应的等价无穷大就是: 1 x 1 n − 2 m \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}} xn1m21

    因为   m \,m m n   n\, n是正整数,所以   1 n − 2 m < 1 n ⩽ 1 \,{\frac{1}{n}-\frac{2}{m}}<\frac{1}{n}\leqslant 1 n1m2<n11 ∫ 0 1 2 1 x 1 n − 2 m d x   \int^\frac{1}{2}_0\frac{1}{x^{\frac{1}{n}-\frac{2}{m}}}\text{d}x\, 021xn1m21dx收敛,
    所以   ∫ 0 1 2 ln 2 ( 1 − x ) m x n d x   \,\int^\frac{1}{2}_0\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x\, 021nx mln2(1x) dx也收敛.

  (2) 对于   ∫ 1 2 1 ln 2 ( 1 − x ) m x n d x \,\int^1_\frac{1}{2}\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x 211nx mln2(1x) dx,应当使用定理2进行判断,尝试找被积函数在   x → 1 −   \,x\to1^-\, x1时的等价或同阶无穷大:
ln 2 ( 1 − x ) m x n ∼ [ ln ( 1 − x ) ] 2 m x 1 n ∼ [ ln ( 1 − x ) ] 2 m \frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\sim\frac{[\text{ln}(1-x)]^{\frac{2}{m}}}{x^{\frac{1}{n}}}\sim [\text{ln}(1-x)]^{\frac{2}{m}} nx mln2(1x) xn1[ln(1x)]m2[ln(1x)]m2
    因为当   x → 0 + \,x\to 0^+ x0+时, ln x   \text{ln}x\, lnx趋近于无穷的速度比   1 x   \,\frac{1}{x}\, x1的任意次幂都要慢,
    所以当   x → 1 − \,x\to 1^- x1时, ln ( 1 − x )   \text{ln}(1-x)\, ln(1x)趋近于无穷的速度比   1 1 − x   \,\frac{1}{1-x}\, 1x1的任意次幂都要慢,
    而 ∫ 1 2 1 1 1 − x d x   \int^1_\frac{1}{2}\frac{1}{{\sqrt{1-x}}}\text{d}x\, 2111x 1dx收敛 (不选   1 1 − x   \,\frac{1}{1-x}\, 1x1是因为 ∫ 1 2 1 1 1 − x d x   \int^1_\frac{1}{2}\frac{1}{{1-x}}\text{d}x\, 2111x1dx发散),
    所以   ∫ 1 2 1 ln 2 ( 1 − x ) m x n d x \,\int^1_\frac{1}{2}\frac{\sqrt[m]{\text{ln}^2(1-x)}}{\sqrt[n]x}\text{d}x 211nx mln2(1x) dx也收敛.
  综上:原反常积分的敛散性与   m \,m m n   n\, n取值无关.

(五) 反常积分相关性质总结

  (1) 对于无穷限积分   ∫ 0 + ∞ f ( x ) d x   \,\int^{+\infty}_{0}f(x)\text{d}x\, 0+f(x)dx   ∫ − ∞ 0 f ( x ) d x \,\int^{0}_{-\infty}f(x)\text{d}x 0f(x)dx,只要其中之一发散,则   ∫ − ∞ + ∞ f ( x ) d x   \,\int^{+\infty}_{-\infty}f(x)\text{d}x\, +f(x)dx发散.

  换言之,   ∫ − ∞ + ∞ f ( x ) d x   \,\int^{+\infty}_{-\infty}f(x)\text{d}x\, +f(x)dx收敛,当且仅当   ∫ 0 + ∞ f ( x ) d x   \,\int^{+\infty}_{0}f(x)\text{d}x\, 0+f(x)dx   ∫ − ∞ 0 f ( x ) d x   \,\int^{0}_{-\infty}f(x)\text{d}x\, 0f(x)dx都收敛. 反常积分不收敛,不能使用奇偶性质.

  (2) 若   ∫ − ∞ + ∞ f ( x ) d x   \,\int^{+\infty}_{-\infty}f(x)\text{d}x\, +f(x)dx收敛,则 ∫ − ∞ + ∞ f ( x ) d x = { 0 , f ( x ) 是 奇 函 数 , 2 ∫ 0 + ∞ f ( x ) d x , f ( x ) 是 偶 函 数 . \int^{+\infty}_{-\infty}f(x)\text{d}x=\begin{cases}0,&f(x)是奇函数,\\2\int^{+\infty}_0f(x)\text{d}x,&f(x)是偶函数.\end{cases} +f(x)dx={020+f(x)dxf(x)f(x).

  反常积分一定要小心发散的情况. 反常积分收敛,才能使用奇偶性质.

  比如: ∫ − ∞ + ∞ sin x d x \int^{+\infty}_{-\infty}\text{sin}x\text{d}x +sinxdx:由   ∫ 0 + ∞ sin x d x   \,\int^{+\infty}_{0}\text{sin}x\text{d}x\, 0+sinxdx发散,可知   ∫ − ∞ + ∞ sin x d x   \,\int^{+\infty}_{-\infty}\text{sin}x\text{d}x\, +sinxdx发散,并不等于   0 \,0 0.

  (3) 若   ∫ − ∞ + ∞ f ( x ) d x   \,\int^{+\infty}_{-\infty}f(x)\text{d}x\, +f(x)dx收敛,则有 lim ⁡ R → + ∞ ∫ − R R f ( x ) d x   ∃ \lim\limits_{R\to+\infty}\int^R_{-R}f(x)\text{d}x\,\exist R+limRRf(x)dx

    反之,若   lim ⁡ R → + ∞ ∫ − R R f ( x ) d x   ∃ \,\lim\limits_{R\to+\infty}\int^R_{-R}f(x)\text{d}x\,\exist R+limRRf(x)dx ∫ − ∞ + ∞ f ( x ) d x   \int^{+\infty}_{-\infty}f(x)\text{d}x\, +f(x)dx不一定收敛.

  比如   lim ⁡ R → + ∞ ∫ − R R sin x d x = 0 \,\lim\limits_{R\to+\infty}\int^R_{-R}\text{sin}x\text{d}x=0 R+limRRsinxdx=0,但   ∫ − ∞ + ∞ sin x d x   \,\int^{+\infty}_{-\infty}\text{sin}x\text{d}x\, +sinxdx不存在. (3)本质上同(1)、(2)一样,是因为反常积分定义要求两段必须都收敛,整段才收敛.

  (4) 对于无穷限积分   ∫ a + ∞ f ( x ) d x \,\int^{+\infty}_{a}f(x)\text{d}x a+f(x)dx ∫ a + ∞ g ( x ) d x   \int^{+\infty}_{a}g(x)\text{d}x\, a+g(x)dx,有以下结论:

     ∫ a + ∞ f ( x ) d x   \int^{+\infty}_{a}f(x)\text{d}x\, a+f(x)dx收敛 ∫ a + ∞ g ( x ) d x   \int^{+\infty}_{a}g(x)\text{d}x\, a+g(x)dx收敛,则   ∫ a + ∞ [ f ( x ) ± g ( x ) ] d x   \,\int^{+\infty}_{a}[f(x)\pm g(x)]\text{d}x\, a+[f(x)±g(x)]dx收敛.

     ∫ a + ∞ f ( x ) d x   \int^{+\infty}_{a}f(x)\text{d}x\, a+f(x)dx收敛 ∫ a + ∞ g ( x ) d x   \int^{+\infty}_{a}g(x)\text{d}x\, a+g(x)dx发散,则   ∫ a + ∞ [ f ( x ) ± g ( x ) ] d x   \,\int^{+\infty}_{a}[f(x)\pm g(x)]\text{d}x\, a+[f(x)±g(x)]dx发散.
p[[[[[[
     ∫ a + ∞ f ( x ) d x   \int^{+\infty}_{a}f(x)\text{d}x\, a+f(x)dx发散 ∫ a + ∞ g ( x ) d x   \int^{+\infty}_{a}g(x)\text{d}x\, a+g(x)dx发散,则   ∫ a + ∞ [ f ( x ) ± g ( x ) ] d x   \,\int^{+\infty}_{a}[f(x)\pm g(x)]\text{d}x\, a+[f(x)±g(x)]dx敛散性不确定.

8 定积分的几何应用

(一) 特殊曲线总结

  务必要十分熟悉下面的曲线和相关方程:

(1) y   y\, y轴圆

x 2 + y 2 = 2 R x \color{Blue}x^2+y^2=2Rx x2+y2=2Rx r = 2 R   cos θ \color{Red}r=2R\,\text{cos}\theta r=2Rcosθ

(2) x   x\, x轴圆

x 2 + y 2 = 2 R y \color{Blue}x^2+y^2=2Ry x2+y2=2Ry r = 2 R   sin θ \color{Red}r=2R\,\text{sin}\theta r=2Rsinθ

(3) 摆线

  生成:一个圆沿一条直线运动时,圆边界上一定点所形成的轨迹:

    上图与   x   \,x\, x轴交点分别为   x = 0   \,x=0\, x=0   x = 2 π a \,x=2\pi a x=2πa.

  摆线的参数方程
{ x = a ( θ − sin θ ) y = a ( 1 − cos θ ) \begin{cases}\color{Purple}x=a(\theta-\text{sin}\theta)\\\color{Purple}y=a(1-\text{cos}\theta)\end{cases} {x=a(θsinθ)y=a(1cosθ)

  注意
    (1)   x   \,x\, x的方程中是   θ − sin θ \,{\color{Red}\theta}-\text{sin}\theta θsinθ.
    (2) 0 ⩽ θ ⩽ 2 π   0\leqslant\theta\leqslant2\pi\, 0θ2π   0 ⩽ x ⩽ 2 π a   \,0\leqslant x\leqslant2\pi a\, 0x2πa对应摆线的一拱.

(3) 心形线

  极坐标方程
r = a ( 1 − cos θ ) \color{Red}r=a(1-\text{cos}\theta) r=a(1cosθ)

    如果心尖朝向相反方向 (即上图心形线的关于   y   \,y\, y轴对称的图形),其极坐标方程为
r = a ( 1 + cos θ ) \color{Red}r=a(1+\text{cos}\theta) r=a(1+cosθ)

    可以认为   cos θ   \,\text{cos}\theta\, cosθ系数的正负决定了心尖朝向正半轴还是负半轴.

  心形线所围面积 s = 3 2 π a 2 s=\frac{3}{2}\pi a^2 s=23πa2.

(4) 星型线

  直角坐标方程
x 2 3 + y 2 3 = a 2 3 \color{Blue}x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}} x32+y32=a32

  参数方程
{ x = a   cos 3 t y = a   sin 3 t \begin{cases}\color{Purple}x=a\,\text{cos}^3t\\\color{Purple}y=a\,\text{sin}^3t\end{cases} {x=acos3ty=asin3t

(5) 双扭线

  直角坐标方程
( x 2 + y 2 ) 2 = a 2 ( x 2 − y 2 ) \color{Blue}(x^2+y^2)^2=a^2(x^2-y^2) (x2+y2)2=a2(x2y2)

  极坐标方程
r 2 = a 2 cos 2 θ \color{Red}r^2=a^2\text{cos}2\theta r2=a2cos2θ

  注意:双纽线具有   y = ± x   \,y=\pm x\, y=±x两条切线,因此每个象限角度范围为   0 ~ 45 ° \,0~45\degree 045°,第一象限   θ ∈ [ 0 , π 4 ] \,\theta\in[0,\frac{\pi}{4}] θ[0,4π].

   sin   \text{sin}\, sin型双扭线

( x 2 + y 2 ) 2 = 2 a 2 x y \color{Blue}(x^2+y^2)^2=2a^2xy (x2+y2)2=2a2xy r 2 = a 2 sin 2 θ \color{Red}r^2=a^2\text{sin}2\theta r2=a2sin2θ

(二) 面积
1 直角坐标平面面积

  (1) 由   y = f ( x ) ⩾ 0 \,y=f(x)\geqslant0 y=f(x)0 x = a   x=a\, x=a   x = b    ( a < b )   \,x=b\;(a<b)\, x=b(a<b)围成的面积:
A = ∫ a b f ( x ) d x {\color{Blue}A=\int^b_af(x)\text{d}x} A=abf(x)dx

  (2) 由   y = f ( x ) \,y=f(x) y=f(x) y = g ( x ) y=g(x) y=g(x) x = a   x=a\, x=a   x = b    ( a < b )   \,x=b\;(a<b)\, x=b(a<b)围成的面积:
A = ∫ a b ∣ f ( x ) − g ( x ) ∣ d x {\color{Blue}A=\int^b_a\big|f(x)-g(x)\big|\text{d}x} A=abf(x)g(x)dx

2 极坐标平面面积

  (3) 由   r = r ( θ )    ( a ⩽ θ ⩽ b )   \,r=r(\theta)\;(a\leqslant\theta\leqslant b)\, r=r(θ)(aθb)围成的面积:

A = 1 2 ∫ α β r 2 ( θ ) d θ {\color{Blue}A=\frac{1}{2}\int_{\alpha}^\beta r^2(\theta)\text{d}\theta} A=21αβr2(θ)dθ

  (4) 由   r = r 1 ( θ ) \,r=r_1(\theta) r=r1(θ) r = r 2 ( θ )    ( r 1 ( θ ) ⩽ r 2 ( θ ) , a ⩽ θ ⩽ b )   r=r_2(\theta)\;(r_1(\theta)\leqslant r_2(\theta),a\leqslant\theta\leqslant b)\, r=r2(θ)(r1(θ)r2(θ)aθb)围成的面积:
A = 1 2 ∫ α β [ r 2 2 ( θ ) − r 1 2 ( θ ) ] d θ {\color{Blue}A=\frac{1}{2}\int_{\alpha}^\beta [r_2^2(\theta)-r_1^2(\theta)]\text{d}\theta} A=21αβ[r22(θ)r12(θ)]dθ

3 旋转曲面侧面积

   L : y = f ( x )    ( a ⩽ x ⩽ b )   L:y=f(x)\;(a\leqslant x\leqslant b)\, L:y=f(x)(axb)   x   \,x\, x轴旋转所得旋转体的侧面积:

     1 o      1^o\;\; 1o [ x , x + d x ] ⊂ [ a , b ] [x,x+\text{d}x]\subset[a,b] [x,x+dx][a,b].

     2 o      2^o\;\; 2o d A = 2 π ∣ f ( x ) ∣ d s \text{d}A=2\pi|f(x)|\text{d}s dA=2πf(x)ds

     3 o      3^o\;\; 3o A = ∫ a b d A A=\int^b_a\text{d}A A=abdA

A = ∫ a b ∣ f ( x ) ∣ ⋅ 1 + f ′ 2 ( x ) d x {\color{Blue}A=\int^b_a\big|f(x)\big|\cdot\sqrt{1+f'^2(x)}\text{d}x} A=abf(x)1+f2(x) dx

  • 可以不需要记忆,但是要知道怎么求.

   L : { x = φ ( t ) y = ψ ( t )    ( α ⩽ θ ⩽ β )   L:\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}\;(\alpha\leqslant\theta\leqslant\beta)\, L:{x=φ(t)y=ψ(t)(αθβ)   x   \,x\, x轴旋转所得旋转体的侧面积:

A = 2 π ∫ α β ∣ ψ ( t ) ∣ ⋅ φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t {\color{Blue}A=2\pi\int^\beta_\alpha\big|\psi(t)\big|\cdot\sqrt{\varphi'^2(t)+\psi'^2{(t)}}\text{d}t} A=2παβψ(t)φ2(t)+ψ2(t) dt

(三) 体积

  注意:求侧面积用   d s \,\text{d}s ds,求体积则用   d x \,\text{d}x dx.

1 绕   x   \,x\, x轴旋转体

   L : y = f ( x )    ( a ⩽ x ⩽ b )   L:y=f(x)\;(a\leqslant x\leqslant b)\, L:y=f(x)(axb)   x   \,x\, x轴围成的图形绕   x   \,x\, x轴旋转一周所得旋转体的体积:

V x = π ∫ a b f 2 ( x ) d x {\color{Blue}V_x=\pi\int^b_af^2(x)\text{d}x} Vx=πabf2(x)dx

2 绕   y   \,y\, y轴旋转体

   L : y = f ( x )    ( a ⩽ x ⩽ b )   L:y=f(x)\;(a\leqslant x\leqslant b)\, L:y=f(x)(axb)   x   \,x\, x轴围成的图形绕   y   \,y\, y轴旋转一周所得旋转体的体积:

V y = 2 π ∫ a b ∣ x ∣ ∣ f ( x ) ∣ d x {\color{Blue}V_y=2\pi\int^b_a\big|x\big|\big|f(x)\big|\text{d}x} Vy=2πabxf(x)dx

3 截口面积求体积

  几何体位于   x = a   \,x=a\, x=a   x = b   \,x=b\, x=b之间,对   x ∈ [ a , b ] \,x\in[a,b] x[a,b],截口面积为   A ( x ) \,A(x) A(x),则几何体的体积为:
V = ∫ a b A ( x ) d x {\color{Blue}V=\int^b_aA(x)\text{d}x} V=abA(x)dx

(四) 弧长

l = ∫ L d s l=\int_L\text{d}s l=Lds

  以下弧长公式与弧微分的三种形式一一对应:

   L : y = f ( x )    ( a ⩽ x    ⩽ b ) L:y=f(x)\;(a\leqslant x\;\leqslant b) Ly=f(x)(axb),则曲线   L   \,L\, L的长度为:
l = ∫ a b 1 + f ′ 2 ( x ) d x {\color{Blue}l=\int^b_a\sqrt{1+f'^2(x)}\text{d}x} l=ab1+f2(x) dx

   L : { x = φ ( t ) y = ψ ( t )    ( α ⩽ θ ⩽ β ) L:\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}\;(\alpha\leqslant\theta\leqslant\beta) L{x=φ(t)y=ψ(t)(αθβ),则曲线   L   \,L\, L的长度为:
l = ∫ α β φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t {\color{Blue}l=\int^\beta_\alpha\sqrt{\varphi'^2(t)+\psi'^2(t)}\text{d}t} l=αβφ2(t)+ψ2(t) dt

   L : r = r ( θ )    ( a ⩽ θ    ⩽ b ) L:r=r(\theta)\;(a\leqslant \theta\;\leqslant b) Lr=r(θ)(aθb),则曲线   L   \,L\, L的长度为:
l = ∫ α β r 2 ( θ ) + r ′ 2 ( θ ) ) d θ {\color{Blue}l=\int^\beta_\alpha\sqrt{r^2(\theta)+r'^2(\theta))}\text{d}\theta} l=αβr2(θ)+r2(θ)) dθ

(五) 平均值

f ˉ = 1 b − a ∫ a b f ( x ) d x \bar{f}=\frac{1}{b-a}\int^b_af(x)\text{d}x fˉ=ba1abf(x)dx

9 定积分的物理应用

(一) 变力沿直线做功

  设   F ( x )   \,F(x)\, F(x)为沿   x   \,x\, x轴正向的变力,则物体从点   a   \,a\, a移动到点   b   \,b\, b所做的功为:
W = ∫ b a F ( x ) d x W=\int^a_bF(x)\text{d}x W=baF(x)dx

(二) 抽水做功

  设一盛满水的容器截口面积为   A ( x ) \,A(x) A(x),水面初始位于   x = a   \,x=a\, x=a处,抽水后水面位于   x = b   \,x=b\, x=b处,则抽水过程所做的功为:
W = ρ g ∫ a b x A ( x ) d x W=\rho g\int^b_axA(x)\text{d}x W=ρgabxA(x)dx

  注意:这类题目要根据情况适当建立坐标系.

  功元素为: d W = ρ g x A ( x ) d x \text{d}W=\rho gxA(x)\text{d}x dW=ρgxA(x)dx,代表抽掉截口面积为   A ( x ) \,A(x) A(x),高度为   d x   \,\text{d}x\, dx的水所做的功.

(三) 平板受到的(静)水压力

  设一垂直浸没在水中的平板(上下边水平,左右边不规则),以平板上边方向建立   y   \,y\, y轴,则其上下边与   y   \,y\, y轴平行( x = a x=a x=a x = b x=b x=b),左右边分别对应关于   x   \,x\, x的函数   y = f ( x ) \,y=f(x) y=f(x) y = g ( x ) y=g(x) y=g(x),则平板一侧受到的压力为:
F = ρ g ∫ a b x [ f ( x ) − g ( x ) ] d x F=\rho g \int^b_a x [f(x)-g(x)]\text{d}x F=ρgabx[f(x)g(x)]dx

  力元素为: d F = ρ g x [ f ( x ) − g ( x ) ] d x \text{d}F=\rho g x [f(x)-g(x)]\text{d}x dF=ρgx[f(x)g(x)]dx,代表深度为   x \,x x,高度为   d x   \,\text{d}x\, dx的平板所受到的(水平)压力.

题型

1 概念和性质

(一) 判断原函数连续、可导性
(二) 比较定积分大小

  思路
    (1) 积分区间相同,比较定积分的大小转化为比较被积函数的大小.
    (2) 见到   ( b − a )   \,(b-a)\, (ba)要能够熟练转换积分: f ( b ) ( b − a ) = ∫ a b f ( b ) d x f(b)(b-a)=\int^b_af(b)\text{d}x f(b)(ba)=abf(b)dx,便于比较.

(三) 积分中值定理
(四) 求平均值

y = f ( x )    ( a ⩽ x ⩽ b ) ⇒ y ˉ = 1 b − a ∫ a b f ( x ) d x y=f(x)\;(a\leqslant x\leqslant b)\Rightarrow\bar{y}=\frac{1}{b-a}\int^b_af(x)\text{d}x y=f(x)(axb)yˉ=ba1abf(x)dx

2 定积分定义求n项和极限

  极限与连续部分的重复考点,不再赘述.

3 由   f ( x )   \,f(x)\, f(x)含自身定积分的表达式,求   f ( x ) \,f(x) f(x) (设   A \,A A)

  思路
    设   A =   \,A=\, A=式中出现的定积分.

  例:
f ( x ) = x 1 + cos 2 x + ∫ − π π f ( x ) sin x d x , f ( x ) = ? f(x)=\frac{x}{1+\text{cos}^2x}+\int^{\pi}_{-\pi}f(x)\text{sin}x\text{d}x,f(x)=? f(x)=1+cos2xx+ππf(x)sinxdxf(x)=?
  解:
       1 o    1^o\; 1o   A = ∫ − π π f ( x ) sin x d x \,A=\int^{\pi}_{-\pi}f(x)\text{sin}x\text{d}x A=ππf(x)sinxdx, 则有
f ( x ) sin x = x sin x 1 + cos 2 x + A ⋅ sin x f(x)\text{sin}x=\frac{x\text{sin}x}{1+\text{cos}^2x}+A\cdot\text{sin}x f(x)sinx=1+cos2xxsinx+Asinx
       2 o    2^o\; 2o两边求积分:
A = ∫ − π π x sin x 1 + cos 2 x d x = − 2 π ∫ 0 π 2 d ( cos x ) 1 + cos 2 x = π 2 2 A=\int_{-\pi}^{\pi}\frac{x\text{sin}x}{1+\text{cos}^2x}\text{d}x=-2\pi\int^{\frac{\pi}{2}}_0{\frac{\text{d}(\text{cos}x)}{1+\text{cos}^2x}}=\frac{\pi^2}{2} A=ππ1+cos2xxsinxdx=2π02π1+cos2xd(cosx)=2π2
       3 o    3^o\; 3o带回   f ( x )   \,f(x)\, f(x)表达式:
f ( x ) = x 1 + cos 2 x + π 2 2 . f(x)=\frac{x}{1+\text{cos}^2x}+\frac{\pi^2}{2}. f(x)=1+cos2xx+2π2.

  注意:如果一个等式出现多个不同积分限,要依次设   A \,A A B B B、…求解.

4 变积分限函数相关问题

  注意:不管是哪种变积分限的问题,都必先清理变积分限变量,再进行计算.

(1) 求导数
(2) 求极限

  清理积分限变量、洛必达法则、构造导数定义 (可能是莱布尼茨公式形式),无非就是这些考法.

(3) 计算定积分
(4) 求最值
(5) 周期函数性质
(6) 判断奇偶性
(7) 判断正负
(8) 判断等价无穷小
(9) 结合二重积分
(10) 结合微分方程
(11) 确定原函数

5 定积分的计算

(1) 特殊性质计算定积分

    包括三类:对称区间的定积分性质、三角函数的定积分性质、周期函数定积分性质,解法见记忆内容部分.

(2) 积分法计算定积分

  主要是通过换元积分法、分部积分法,或根据几何意义求解.

  注意:有一类题型需要特别留意:
      题目给出一个变积分限函数   f ( x )   \,f(x)\, f(x)(但它往往积不出来)或者给出一些   f ( x )   \,f(x)\, f(x)的定积分条件,然后要求计算另一个含   f ( x )   \,f(x)\, f(x)的积分. 这种题目需从结论入手,使用分部积分法解决.

(3) 分段函数计算定积分

  注意
    (1) 分段函数题目也常与变积分限函数结合. 有的题目要求的是变积分限函数 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int^x_0f(t)\text{d}t F(x)=0xf(t)dt,注意段与段之间存在"累积"效果. 比如   x ∈ [ 0 , 2 ] \,x\in[0,2] x[0,2],计算   1 < x ⩽ 2   \,1<x\leqslant2\, 1<x2这段的   F ( x )   \,F(x)\, F(x)时,不要忘记加上   0 < x ⩽ 1   \,0<x\leqslant 1\, 0<x1这段,即   F ( x ) = ∫ 0 1 + ∫ 1 x   \,F(x)=\int_0^1+\int_1^x\, F(x)=01+1x.
    (2) 绝对值、 max \text{max} max min \text{min} min、数列极限等都是分段函数的标志.

(4) 积分限变换计算定积分

  这些题目没有总结出特殊性质 (比如   tan x   \,\text{tan}x\, tanx   cot x   \,\text{cot}x\, cotx之间的转换),但使用积分限变换的一些技巧也能求解 (记忆内容部分有总结).

6 定积分证明

(一) f ( x )   f(x)\, f(x)为连续函数

  特征:只给了连续(或可积)条件和其他初始条件,没有涉及任何导数.
  解题思路
    这类题目五花八门,不便总结,下面列举可能使用到的一些方法:
      (1) 基本性质、特殊性质等;
      (2) 变换积分区间;
      (3) 定积分遇到绝对值的处理;
      (4) 定积分和非定积分组成式子的处理;
      (5) 定积分相关不等式性质;
      (6) 积分中值定理(闭区间)、对原函数使用中值定理(开区间);
      (7) 柯西不等式

  注意
    构造辅助函数发现取不到端点的处理方法:
      比如使用还原法构造出辅助函数:
φ ( x ) = ∫ 0 x f ( x ) d x x \varphi(x)=\frac{\int^x_0f(x)\text{d}x}{x} φ(x)=x0xf(x)dx

      题目中条件为 f ( 0 ) = 0 f(0)=0 f(0)=0 ∫ 0 1 f ( x ) d x = 0 \int^1_0f(x)\text{d}x=0 01f(x)dx=0,显然我们希望   φ ( 0 ) = φ ( 1 ) = 0 \,\varphi(0)=\varphi(1)=0 φ(0)=φ(1)=0.
      然而   φ ( x )   \,\varphi(x)\, φ(x)   x = 0   \,x=0\, x=0点不存在.
      因此我们重新构造辅助函数为:
φ ( x ) = { ∫ 0 x f ( x ) d x x , 0 < x ⩽ 1 0 , x = 0. \varphi(x)=\begin{cases}\frac{\int^x_0f(x)\text{d}x}{x},&0<x\leqslant 1\\0,&x=0.\end{cases} φ(x)={x0xf(x)dx00<x1x=0.

(二) f ( x )   f(x)\, f(x)为连续函数且   f ( x )   \,f(x)\, f(x)单调增加/减少

  特征:只给了连续条件和单调性,以及其他初始条件,没有涉及任何导数.
  思路
    1. 利用基本性质、特殊性质、变换积分限等;
    2. 根据单调性构造辅助函数,主要有两种方法:
      (1) 若结论是关于   a \,a a   b   \,b\, b的定积分等式或不等式, φ ( x ) =   \varphi(x)=\, φ(x)=左侧   −   \,-\, 右侧 (将   b   \,b\, b改为   x \,x x).
      (2) 若   f ( x )   \,f(x)\, f(x)单调增加,则   ∀   x , y ∈ [ a , b ] \,\forall\,x,y\in[a,b] x,y[a,b] ( x − y ) [ f ( x ) − f ( y ) ] ⩾ 0 (x-y)[f(x)-f(y)]\geqslant0 (xy)[f(x)f(y)]0
       若   f ( x )   \,f(x)\, f(x)单调减少,则   ∀   x , y ∈ [ a , b ] \,\forall\,x,y\in[a,b] x,y[a,b] ( x − y ) [ f ( x ) − f ( y ) ] ⩽ 0 (x-y)[f(x)-f(y)]\leqslant0 (xy)[f(x)f(y)]0.
       构造辅助函数时,要从结论中选取两个点作为   x   \,x\, x   y   \,y\, y (通常是   x   \,x\, x和另一个点).
    3. 积分中值定理.

(三) f ( x )   f(x)\, f(x)为周期函数

  思路:使用周期函数的两个性质.
  注意
    1. 要熟练辨别周期函数,题目通常不会直接明示;
    2. 要非常熟练运用两个性质,尤其是二者的结合使用:
∫ 0 n π ∣ cos x ∣ d x = n ∫ 0 π ∣ cos x ∣ d x = n ∫ − π 2 π 2 ∣ cos x ∣ d x = 2 n ∫ 0 π 2 cos x d x = 2 n \int^{n\pi}_0\big|\text{cos}x\big|\text{d}x=n\int^{\pi}_0\big|\text{cos}x\big|\text{d}x=n\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\big|\text{cos}x\big|\text{d}x=2n\int^{\frac{\pi}{2}}_0\text{cos}x\text{d}x=2n 0nπcosxdx=n0πcosxdx=n2π2πcosxdx=2n02πcosxdx=2n

    3. 对    ∀   x \;\forall\,x x,都存在自然数   n   \,n\, n,使得   n T ⩽ x ⩽ ( n + 1 ) T \,nT\leqslant x\leqslant(n+1)T nTx(n+1)T.

(四) f ( x )   f(x)\, f(x)   [ a , b ]   \,[a,b]\, [a,b]上一阶可导

  思路:中值定理重复考点,不多赘述,特别强调   f \,f f f ′   f'\, f问题的解题思路:
    题干中只涉及   f \,f f f ′   f'\, f
      (1) 有单调性条件: f ′ > 0    ( < 0 ) ⇒ f ↑    ( ↓ ) f'>0\;(<0)\Rightarrow f\uparrow\;(\downarrow) f>0(<0)f()
      (2) 待证结论积分号中无导数 ( L \text{L} L): f ( x ) − f ( a ) = f ′ ( ξ ) ( x − a ) f(x)-f(a)=f'(\xi)(x-a) f(x)f(a)=f(ξ)(xa)
      (3) 待证结论积分号中有导数 ( N . − L . N.-L. N.L.): f ( x ) − f ( a ) = ∫ a x f ′ ( t ) d t f(x)-f(a)=\int^x_af'(t)\text{d}t f(x)f(a)=axf(t)dt.

  注意
    (1) 待证结论出现复杂的最值表示形式 (如: max ⁡ 0 ⩽ x ⩽ 1 ∣ f ′ ( x ) ∣ d x \max\limits_{0\leqslant x\leqslant 1}|f'(x)|\text{d}x 0x1maxf(x)dx),可以令其等于   m \,m m M M M,便于分析.
    (2) 关于什么时候应该设   F ( x ) \,F(x) F(x)
      a. 题干出现   ∫ a b f ( x ) d x = 0 \,\int_a^bf(x)\text{d}x=0 abf(x)dx=0 F ( a ) = F ( b ) = 0 F(a)=F(b)=0 F(a)=F(b)=0.

(五) f ( x )   f(x)\, f(x)高阶可导

  思路
    1. 涉及定积分的高阶导数问题,多半使用   T   \,\text{T}\, T. 关于   x 0   \,x_0\, x0   ξ   \,\xi\, ξ的选取同中值定理的选取,不再赘述. 但泰勒公式使用函数可能是   f ( x )   \,f(x)\, f(x)   F ( x )   \,F(x)\, F(x).
    当出现以下两种情况时,考虑对   F ( x )   \,F(x)\, F(x)使用   T \,\text{T} T
      (1) 待证结论中出现   ξ ∈ ( a , b ) \,\xi\in(a,b) ξ(a,b).
      (2) 待证结论中出现   f ( n ) ( ξ ) ( n + 1 ) ! \,\frac{f^{(n)}(\xi)}{(n+1)!} (n+1)!f(n)(ξ).
    2. 关于   f ′ ′ ( x ) ⩾ 0   ( ⩽ 0 )   \,f''(x)\geqslant 0\,(\leqslant 0)\, f(x)0(0)的两个思路:
      (1) f ′ ( x ) ↑ f'(x)\uparrow f(x)
      (2) f ( x ) ⩾ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x)\geqslant f(x_0)+f'(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0).

(六) 疑难题目总结
(1) 题目要证明或求 lim ⁡ x → 0 ∫ 0 x f ( t ) d t x \lim\limits_{x\to0}\frac{\int^x_0f(t)\text{d}t}{x} x0limx0xf(t)dt

  题目特征
    这类题目会显式或隐式的告知函数   f ( x )   \,f(x)\, f(x)是周期函数. 最后要求解出   lim ⁡ x → 0 ∫ 0 x f ( t ) d t x   \,\lim\limits_{x\to0}\frac{\int^x_0f(t)\text{d}t}{x}\, x0limx0xf(t)dt或证明   lim ⁡ x → 0 ∫ 0 x f ( t ) d t x = . . . \,\lim\limits_{x\to0}\frac{\int^x_0f(t)\text{d}t}{x}=... x0limx0xf(t)dt=...,基本按照下面的固定套路求解. 难题可能会在判断   f ( x )   \,f(x)\, f(x)是周期函数和确定其周期上做文章.

  解题步骤

  1. 确定函数是周期函数 (确定周期为   T \,T T),确定函数大于等于   0   \,0\, 0还是小于等于   0 \,0 0.
  2.    ∀   x \;\forall\,x x,都存在自然数   n   \,n\, n,使得   n T ⩽ x ⩽ ( n + 1 ) T \,nT\leqslant x\leqslant(n+1)T nTx(n+1)T.
  3. 根据函数正负得到下面的关系 (以   f ( x ) ⩾ 0   \,f(x)\geqslant 0\, f(x)0为例):
    ∫ 0 n f ( x ) d x ⩽ ∫ 0 x f ( x ) d x ⩽ ∫ 0 n + 1 f ( x ) d x \int^n_0f(x)\text{d}x\leqslant\int^x_0f(x)\text{d}x\leqslant\int^{n+1}_0f(x)\text{d}x 0nf(x)dx0xf(x)dx0n+1f(x)dx

n ∫ 0 1 f ( x ) d x ⩽ ∫ 0 x f ( x ) d x ⩽ ( n + 1 ) ∫ 0 1 f ( x ) d x n\int^1_0f(x)\text{d}x\leqslant\int^x_0f(x)\text{d}x\leqslant(n+1)\int^{1}_0f(x)\text{d}x n01f(x)dx0xf(x)dx(n+1)01f(x)dx

  1.   n T ⩽ x ⩽ ( n + 1 ) T \,nT\leqslant x\leqslant(n+1)T nTx(n+1)T
    n ∫ 0 1 f ( x ) d x ( n + 1 ) T ⩽ ∫ 0 x f ( x ) d x x ⩽ ( n + 1 ) ∫ 0 1 f ( x ) d x n T \frac{n\int^1_0f(x)\text{d}x}{(n+1)T}\leqslant\frac{\int^x_0f(x)\text{d}x}{x}\leqslant\frac{(n+1)\int^{1}_0f(x)\text{d}x}{nT} (n+1)Tn01f(x)dxx0xf(x)dxnT(n+1)01f(x)dx

  2. 运用夹逼定理求极限,这种题目左右侧极限必然是等于同一个值的.

(2) 条件出现   0 < m ⩽ f ( x ) ⩽ M \,0<m\leqslant f(x)\leqslant M 0<mf(x)M

  可以考虑下面的一系列处理思路 (当然有的题目不需要进行完这个过程). 总之这种条件算是一种单调性条件的替换.

  处理思路
    1. 0 < m ⩽ f ( x ) ⩽ M ⇒ f ( x ) − M ⩽ 0 0<m\leqslant f(x)\leqslant M\Rightarrow f(x)-M\leqslant 0 0<mf(x)Mf(x)M0 f ( x ) − m ⩾ 0 f(x)-m\geqslant 0 f(x)m0

    2. [ f ( x ) − m ] [ f ( x ) − M ] ⩽ 0 [f(x)-m][f(x)-M]\leqslant 0 [f(x)m][f(x)M]0

    3. [ f ( x ) − m ] [ f ( x ) − M ] f ( x ) ⩽ 0 \frac{[f(x)-m][f(x)-M]}{f(x)}\leqslant 0 f(x)[f(x)m][f(x)M]0
    4. f ( x ) + m M f ( x ) ⩽ m + M f(x)+\frac{mM}{f(x)}\leqslant m+M f(x)+f(x)mMm+M

(3) 定积分+非定积分的两种思路

  在记忆部分中已经给出了处理思路,不再赘述.

(4) 柯西不等式

  使用柯西不等式的特征
    1. 待证结论中出现定积分之积
    2. 待证结论中定积分内部出现平方.

(5) 拆分

  注意
    (1) 柯西不等式的使用非常灵活,有的题目需要考虑引入: ∫ a b 1 2 d x \int_a^b 1^2\text{d}x ab12dx.
      比如下面的不等式成立,即   g ( x ) = 1 \,g(x)=1 g(x)=1
[ ∫ a b f ( x ) d x ] 2 ⩽ ∫ a b f 2 ( x ) d x ⋅ ∫ a b 1 2 d x \bigg[\int^b_af(x)\text{d}x\bigg]^2\leqslant \int_a^b f^2(x)\text{d}x\cdot\int_a^b 1^2\text{d}x [abf(x)dx]2abf2(x)dxab12dx

    (2) 只要出现定积分之积就要考虑能不能使用柯西不等式解,即使没有平方也要考虑构造,比如:
∫ 0 π 2 a cos x d x ⋅ ∫ 0 π 2 a − cos x d x = ∫ 0 π 2 ( a cos x 2 ) 2 d x ⋅ ∫ 0 π 2 ( a − cos x 2 ) 2 d x \int^{\frac{\pi}{2}}_0a^{\text{cos}x}\text{d}x\cdot\int^{\frac{\pi}{2}}_0a^{-\text{cos}x}\text{d}x=\int^{\frac{\pi}{2}}_0(a^{\frac{\text{cos}x}{2}})^2\text{d}x\cdot\int^{\frac{\pi}{2}}_0(a^{-\frac{\text{cos}x}{2}})^2\text{d}x 02πacosxdx02πacosxdx=02π(a2cosx)2dx02π(a2cosx)2dx ⩾ ( ∫ 0 π 2 a cos x 2 ⋅ a − cos x 2 d x ) 2 = π 2 4 \geqslant\bigg(\int^{\frac{\pi}{2}}_0a^{\frac{\text{cos}x}{2}}\cdot a^{-\frac{\text{cos}x}{2}}\text{d}x\bigg)^2=\frac{\pi^2}{4} (02πa2cosxa2cosxdx)2=4π2
    (3) 不一定结论就可以直接往柯西不等式上套. 比如有的题目可能就需要先构造   f ( x )   \,f(x)\, f(x)的平方,再两边积分才能使用柯西不等式.

(6) 变换积分区间

  在记忆部分中已经给出了处理思路,不再赘述. 这类题目需要多练习,其中有些构造非常精巧.

(7) 定积分进入函数内部

  题目特征
    待证结论中出现定积分在函数内部,通常需要用   f ′ ′ ( x )   \,f''(x)\, f(x)的性质解决. 这类题目特征不太好描述,看两个例子感受吧.
    比如证明的结论是:
ln ∫ 0 1 f ( x ) d x = ∫ 0 1 ln f ( x ) d x \text{ln}\int_0^1f(x)\text{d}x=\int^1_0\text{ln}f(x)\text{d}x ln01f(x)dx=01lnf(x)dx f [ ∫ a b x φ ( x ) d x ] ⩽ ∫ a b f ( x ) φ ( x ) d x f\big[\int^b_ax\varphi(x)\text{d}x\big] \leqslant\int_a^bf(x)\varphi{(x)}\text{d}x f[abxφ(x)dx]abf(x)φ(x)dx

  解题思路

  1. 确定函数   g ( x ) \,g(x) g(x). 即定积分外部的那个函数,比如上面的第1个例子   g ( x ) = ln t \,g(x)=\text{ln}t g(x)=lnt,第2个例子就是   f ( x )   \,f(x)\, f(x)本身)
  2. 确定   g ′ ′ ( x )   \,g''(x)\, g(x)正负 (假设   g ′ ′ ( x ) ⩾ 0 \,g''(x)\geqslant 0 g(x)0). 有的题目会直接给出,有的题目需要自己求.
  3.   x 0 =   \,x_0=\, x0=出现在   g ( x )   \,g(x)\, g(x)内部的定积分. 比如上面第1个例子   x 0 = ∫ 0 1 f ( x ) d x \,x_0=\int^1_0f(x)\text{d}x x0=01f(x)dx,第2个例子   x 0 = ∫ a b x φ ( x ) d x \,x_0=\int^b_ax\varphi(x)\text{d}x x0=abxφ(x)dx.
  4. 利用   g ( x ) ⩾ g ( x 0 ) + g ′ ( x 0 ) ( x − x 0 ) \,g(x)\geqslant g(x_0)+g'(x_0)(x-x_0) g(x)g(x0)+g(x0)(xx0),推出不等关系.

7 反常积分计算

  思路:
    (1) Γ   \Gamma\, Γ函数计算.
    (2) 判别法.
    (3) 如果出现在填空题,不必浪费时间判断是否收敛.

8 定积分的几何应用

  • 22
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值