1 三角级数 (不重要)
(1) 简谐振动函数
y = A sin ( ω t + φ ) y=A\,\text{sin}(\omega t+\varphi) y=Asin(ωt+φ)
说明:
(1) 该函数的周期:
2
π
ω
\frac{2\pi}{\omega}
ω2π
(2) 振幅:
A
A
A
(3) 角频率:
ω
\omega
ω
(4) 初相:
φ
\varphi
φ
(2) 非正弦周期函数
对于周期为
T
\,T\,
T的非正弦周期函数,可以用一系列以
T
\,T\,
T为周期的正弦函数
sin
(
n
ω
t
+
φ
n
)
\,\text{sin}(n\omega t+\varphi_n)\,
sin(nωt+φn)表示:
f
(
t
)
=
A
0
+
∑
n
=
1
∞
A
n
sin
(
n
ω
t
+
φ
n
)
(
n
=
1
,
2
,
3
,
.
.
.
)
f(t)=A_0+\sum\limits^\infty_{n=1}A_n\text{sin}(n\omega t+\varphi_n)\;\;\;(n=1,2,3,...)
f(t)=A0+n=1∑∞Ansin(nωt+φn)(n=1,2,3,...)
其中, A 0 A_0 A0、 A n A_n An、 φ n \varphi_n φn 均为常数.
说明:
(1) 这种展开周期函数的行为被称为:谐波分析.
(2) 直流分量:
A
0
A_0
A0
(3) 一次谐波:
A
1
sin
(
ω
t
+
φ
1
)
A_1\text{sin}(\omega t+\varphi_1)
A1sin(ωt+φ1)
(4) 二次谐波:
A
2
sin
(
2
ω
t
+
φ
2
)
A_2\text{sin}(2\omega t+\varphi_2)
A2sin(2ωt+φ2)
(5)
n
n\,
n次谐波:
A
n
sin
(
n
ω
t
+
φ
n
)
A_n\text{sin}(n\omega t+\varphi_n)
Ansin(nωt+φn)
(3) 以 2 l \,2l\, 2l为周期的三角级数
对非正弦周期函数的展开进行变形代换可得三角级数:
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
π
t
l
+
b
n
sin
n
π
t
l
)
(
n
=
1
,
2
,
3
,
.
.
.
)
\frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\frac{n\pi t}{l}+b_n\text{sin}\frac{n\pi t}{l})\;\;\;(n=1,2,3,...)
2a0+n=1∑∞(ancoslnπt+bnsinlnπt)(n=1,2,3,...)
其中, a 0 a_0 a0、 a n a_n an、 b n b_n bn 均为常数.
(4) 以 2 π \,2\pi\, 2π为周期的三角级数
a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) ( n = 1 , 2 , 3 , . . . ) \frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)\;\;\;(n=1,2,3,...) 2a0+n=1∑∞(ancosnx+bnsinnx)(n=1,2,3,...)
其中, a 0 a_0 a0、 a n a_n an、 b n b_n bn 均为常数.
(5) 三角函数系
三角函数系:
1
,
cos
x
,
sin
x
,
cos
2
x
,
sin
2
x
,
.
.
.
,
cos
n
x
,
sin
n
x
,
.
.
.
1,\,\text{cos}x,\,\text{sin}x,\,\text{cos}2x,\,\text{sin}2x,\,...,\,\text{cos}nx,\,\text{sin}nx,\,...
1,cosx,sinx,cos2x,sin2x,...,cosnx,sinnx,...
三角函数系的正交性:
三角函数系中任何两个不同函数的乘积在
[
−
π
,
+
π
]
\,[-\pi,\,+\pi]\,
[−π,+π]上的定积分等于
0
\,0
0:
∫
−
π
π
cos
n
x
d
x
=
0
(
n
=
1
,
2
,
3
,
.
.
.
)
\int^\pi_{-\pi}\text{cos}\,nx\text{d}x=0\;\;\;(n=1,\,2,\,3,\,...)
∫−ππcosnxdx=0(n=1,2,3,...)
∫ − π π sin n x d x = 0 ( n = 1 , 2 , 3 , . . . ) \int^\pi_{-\pi}\text{sin}\,nx\text{d}x=0\;\;\;(n=1,\,2,\,3,\,...) ∫−ππsinnxdx=0(n=1,2,3,...)
∫ − π π sin k x ⋅ cos n x d x = 0 ( k , n = 1 , 2 , 3 , . . . ) \int^\pi_{-\pi}\text{sin}\,kx\cdot\text{cos}\,nx\text{d}x=0\;\;\;(k,\,n=1,\,2,\,3,\,...) ∫−ππsinkx⋅cosnxdx=0(k,n=1,2,3,...)
∫ − π π cos k x ⋅ cos n x d x = 0 ( k , n = 1 , 2 , 3 , . . . , k ≠ n ) \int^\pi_{-\pi}\text{cos}\,kx\cdot\text{cos}\,nx\text{d}x=0\;\;\;(k,\,n=1,\,2,\,3,\,..., k\neq n) ∫−ππcoskx⋅cosnxdx=0(k,n=1,2,3,...,k=n)
∫ − π π sin k x ⋅ sin n x d x = 0 ( k , n = 1 , 2 , 3 , . . . , k ≠ n ) \int^\pi_{-\pi}\text{sin}\,kx\cdot\text{sin}\,nx\text{d}x=0\;\;\;(k,\,n=1,\,2,\,3,\,..., k\neq n) ∫−ππsinkx⋅sinnxdx=0(k,n=1,2,3,...,k=n)
注意:
(1)
1
1\,
1也在三角函数系中,所以三角函数系中任意函数自身在
[
−
π
,
+
π
]
\,[-\pi,\,+\pi]\,
[−π,+π]上的定积分也都等于
0
\,0
0.
(1) 三角函数系中两个相同函数在
[
−
π
,
+
π
]
\,[-\pi,\,+\pi]\,
[−π,+π]上的定积分不等于
0
\,0
0,也不是定值.
2 傅里叶级数基本概念
(1) 傅立叶系数
f
(
x
)
f(x)\,
f(x)是定义在
(
−
∞
,
+
∞
)
\,(-\infty,+\infty)\,
(−∞,+∞)上周期为
2
π
\,2\pi\,
2π的函数.
a
0
=
1
π
∫
−
π
π
f
(
x
)
d
x
a_0=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{d}x
a0=π1∫−ππf(x)dx
a n = 1 π ∫ − π π f ( x ) cos n x d x ( n = 1 , 2 , 3 , . . . ) a_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x){\color{Purple}\text{cos}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=π1∫−ππf(x)cosnxdx(n=1,2,3,...)
b n = 1 π ∫ − π π f ( x ) sin n x d x ( n = 1 , 2 , 3 , . . . ) b_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x){\color{Purple}\text{sin}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=π1∫−ππf(x)sinnxdx(n=1,2,3,...)
如果通过上面三个积分都存在,那么它们定出的系数 a 0 \,a_0 a0、 a 1 a_1 a1、 b 1 b_1 b1、…就是 f ( x ) \,f(x)\, f(x)的傅立叶系数.
(2) 傅立叶级数 ( Fourier Series \text{Fourier Series} Fourier Series)
将傅立叶系数代入以
2
π
\,2\pi\,
2π为周期的三角级数即得傅里叶级数:
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
x
+
b
n
sin
n
x
)
\color{Blue}{\frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)}
2a0+n=1∑∞(ancosnx+bnsinnx)
(3) 狄利克雷收敛定理 ( Dirichlet \text{Dirichlet} Dirichlet)
设
f
(
x
)
\,f(x)\,
f(x)是以
2
π
\,2\pi\,
2π为周期的可积函数,如果
f
(
x
)
\,f(x)\,
f(x)满足:
(1) 在一个周期内连续或只有有限个第一类间断点;
(2) 在一个周期内至多只有有限个极值点.
则
f
(
x
)
\,f(x)\,
f(x)的傅里叶级数收敛,且
当
x
\,x\,
x是
f
(
x
)
\,f(x)\,
f(x)的连续点时,级数收敛于
f
(
x
)
\,f(x)
f(x),即
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
x
+
b
n
sin
n
x
)
=
f
(
x
)
\frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)=\color{Blue}f(x)
2a0+n=1∑∞(ancosnx+bnsinnx)=f(x)
当
x
\,x\,
x是
f
(
x
)
\,f(x)\,
f(x)的间断点时,级数收敛于
1
2
[
f
(
x
−
0
)
+
f
(
x
+
0
)
]
\,\frac{1}{2}[f(x-0)+f(x+0)]
21[f(x−0)+f(x+0)],即
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
x
+
b
n
sin
n
x
)
=
f
(
x
−
0
)
+
f
(
x
+
0
)
2
\frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)=\color{Blue}\frac{f(x-0)+f(x+0)}{2}
2a0+n=1∑∞(ancosnx+bnsinnx)=2f(x−0)+f(x+0)
(4) 正弦级数和余弦函数
正弦级数 (奇函数的傅里叶级数)
奇函数的傅里叶级数是正弦级数:
∑
n
=
1
∞
b
n
sin
n
x
\color{Blue}\sum\limits_{n=1}^{\infty}b_n\,\text{sin}nx
n=1∑∞bnsinnx
b n = 2 π ∫ 0 π f ( x ) sin n x d x ( n = 1 , 2 , 3 , . . . ) b_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{sin}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=π2∫0πf(x)sinnxdx(n=1,2,3,...)
由来:当 f ( x ) \,f(x)\, f(x)为奇函数时, f ( x ) cos n x f(x)\color{Purple}\text{cos}\,nx\, f(x)cosnx是奇函数, f ( x ) sin n x f(x){\color{Purple}\text{sin}\,nx}\, f(x)sinnx是偶函数,所以
a n = 0 a_n=0 an=0 b n = 2 π ∫ 0 π f ( x ) sin n x d x ( n = 1 , 2 , 3 , . . . ) b_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{sin}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=π2∫0πf(x)sinnxdx(n=1,2,3,...)于是有 ∑ n = 1 ∞ b n sin n x \,\sum\limits_{n=1}^{\infty}b_n\text{sin}nx n=1∑∞bnsinnx.
余弦级数 (偶函数的傅里叶级数)
偶函数的傅里叶级数是余弦级数:
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
x
\color{Blue}\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\,\text{cos}nx
2a0+n=1∑∞ancosnx
a 0 = 2 π ∫ 0 π f ( x ) d x a_0=\frac{2}{\pi}\int^\pi_0 f(x)\text{d}x a0=π2∫0πf(x)dx a n = 2 π ∫ 0 π f ( x ) cos n x d x ( n = 1 , 2 , 3 , . . . ) a_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{cos}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=π2∫0πf(x)cosnxdx(n=1,2,3,...)
由来:当 f ( x ) \,f(x)\, f(x)为偶函数时, f ( x ) cos n x f(x)\color{Purple}\text{cos}\,nx\, f(x)cosnx是偶函数, f ( x ) sin n x f(x){\color{Purple}\text{sin}\,nx}\, f(x)sinnx是奇函数,所以
a 0 = 2 π ∫ 0 π f ( x ) d x a_0=\frac{2}{\pi}\int^\pi_0 f(x)\text{d}x a0=π2∫0πf(x)dx a n = 2 π ∫ 0 π f ( x ) cos n x d x ( n = 1 , 2 , 3 , . . . ) a_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{cos}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=π2∫0πf(x)cosnxdx(n=1,2,3,...) b n = 0 b_n=0 bn=0于是有 a 0 2 + ∑ n = 1 ∞ a n cos n x \,\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\,\text{cos}nx 2a0+n=1∑∞ancosnx.
(5) 周期为 2 l \,2l\, 2l的周期函数的傅里叶级数
a 0 2 + ∑ n = 1 ∞ ( a n cos n π x l + b n sin n π x l ) \color{Blue}\frac{a_0}{2}+\sum^\infty_{n=1}\big(a_n\text{cos}\frac{n\pi x}{l}+b_n\text{sin}\frac{n\pi x}{l}\big) 2a0+n=1∑∞(ancoslnπx+bnsinlnπx)
傅立叶系数为:
a
0
=
1
l
∫
−
l
l
f
(
x
)
d
x
a_0=\frac{1}{l}\int^l_{-l}f(x)\text{d}x
a0=l1∫−llf(x)dx
a n = 1 l ∫ − l l f ( x ) cos n π x l d x ( n = 1 , 2 , 3 , . . . ) a_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{cos}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=l1∫−llf(x)coslnπxdx(n=1,2,3,...)
b n = 1 l ∫ − l l f ( x ) sin n π x l d x ( n = 1 , 2 , 3 , . . . ) b_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{sin}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=l1∫−llf(x)sinlnπxdx(n=1,2,3,...)
注意与以 2 π \,2\pi\, 2π为周期傅里叶级数的傅立叶系数对比.
当
f
(
x
)
\,f(x)\,
f(x)为奇函数时,
f
(
x
)
=
∑
n
=
1
∞
b
n
sin
n
π
x
l
(
x
∈
C
)
\color{Blue} f(x)=\sum\limits_{n=1}^{\infty}b_n\,\text{sin}\frac{n\pi x}{l}\;\;\;(x\in C)
f(x)=n=1∑∞bnsinlnπx(x∈C)
b n = 2 l ∫ 0 l f ( x ) sin n π x l d x ( n = 1 , 2 , 3 , . . . ) b_n=\frac{2}{l}\int^l_{0}f(x){\color{Purple}\text{sin}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=l2∫0lf(x)sinlnπxdx(n=1,2,3,...)
当
f
(
x
)
\,f(x)\,
f(x)为偶函数时,
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
a
n
cos
n
π
x
l
(
x
∈
C
)
\color{Blue}f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\,\text{cos}\frac{n\pi x}{l}\;\;\;(x\in C)
f(x)=2a0+n=1∑∞ancoslnπx(x∈C)
a 0 = 2 l ∫ 0 l f ( x ) d x a_0=\frac{2}{l}\int^l_{0}f(x)\text{d}x a0=l2∫0lf(x)dx
a n = 2 l ∫ 0 l f ( x ) cos n π x l d x ( n = 1 , 2 , 3 , . . . ) a_n=\frac{2}{l}\int^l_{0}f(x){\color{Purple}\text{cos}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=l2∫0lf(x)coslnπxdx(n=1,2,3,...)
3 傅里叶级数展开
(一) 将周期为 2 π \,2\pi\, 2π的 f ( x ) \,f(x)\, f(x)展开成傅里叶级数
原理:根据收敛定理,函数
f
(
x
)
\,f(x)\,
f(x)展开的傅里叶级数在连续点处收敛于该点的函数值,而在间断点收敛于该点左右极限的算术平均值. 所以函数
f
(
x
)
\,f(x)\,
f(x)的傅里叶级数展开式为:
f
(
x
)
∼
s
(
x
)
=
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
x
+
b
n
sin
n
x
)
,
\color{Blue}f(x) \sim s(x)= {\frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)},
f(x)∼s(x)=2a0+n=1∑∞(ancosnx+bnsinnx),
x
∈
{
x
∣
f
(
x
)
=
1
2
[
f
(
x
−
0
)
+
f
(
x
+
0
)
]
}
\color{Blue}x\in\big\{x\big|f(x)=\frac{1}{2}[f(x-0)+f(x+0)]\big\}
x∈{x∣∣f(x)=21[f(x−0)+f(x+0)]}
f ( x ) ∼ s ( x ) f(x) \sim s(x) f(x)∼s(x): f ( x ) f(x)\, f(x)展开为傅里叶级数 s ( x ) \,s(x) s(x).
注意:特别注意傅立叶级数展开式 x \,x\, x满足的条件. 这就是为什么我们不能认为 f ( x ) \,f(x)\, f(x)等于傅里叶级数,而要说是 f ( x ) \,f(x)\, f(x)展开成傅里叶级数. 因为根据狄利克雷收敛定理,函数 f ( x ) \,f(x)\, f(x)展开的傅里叶级数在连续点处收敛于该点的函数值,而在间断点收敛于该点左右极限的算术平均值. 也就是说, f ( x ) f(x)\, f(x)与傅里叶级数相等,当且仅当 f ( x ) \,f(x)\, f(x)连续. 否则,在 f ( x ) \,f(x)\, f(x)的间断点处,傅里叶级数会取左右极限的算术平均值.
步骤:
step 1. 确定函数连续的部分 (找出间断点).
step 2. 计算傅立叶系数
a
0
\,a_0
a0、
a
n
a_n
an、
b
n
b_n
bn (
n
=
1
,
2
,
3
,
.
.
.
n=1,2,3,...
n=1,2,3,...).
step 3. 将傅里叶系数代入傅里叶级数展开式即可.
例. 设 f ( x ) \,f(x)\, f(x)是周期为 2 π \,2\pi\, 2π的周期函数,它在 [ − π , π ) \,[-\pi,\pi)\, [−π,π)上的表达式为:
f ( x ) = { − 1 , − π ⩽ x < 0 , 1 , 0 ⩽ x < π . f(x)=\begin{cases}-1,&-\pi\leqslant x<0,\\1,&0\leqslant x<\pi.\end{cases} f(x)={−1,1,−π⩽x<0,0⩽x<π.将 f ( x ) \,f(x)\, f(x)展开成傅里叶级数.
解:
当 x ≠ k π \,x\neq k\pi\, x=kπ时,级数收敛于 f ( x ) \,f(x)\, f(x).
a 0 = 1 π ∫ − π π f ( x ) d x = 0 a_0=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\text{d}x=0 a0=π1∫−ππf(x)dx=0a n = 1 π ∫ − π π f ( x ) cos n x d x = 0 a_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{cos}nx\text{d}x=0 an=π1∫−ππf(x)cosnxdx=0
b n = 1 π ∫ − π π f ( x ) sin n x d x = 2 π ∫ 0 π sin n x d x = 2 n π [ − ( cos n x ) ] ∣ 0 π b_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{sin}nx\text{d}x=\frac{2}{\pi}\int^\pi_{0}\text{sin}nx\text{d}x=\frac{2}{n\pi}[-(\text{cos}nx)]\big|^\pi_0 bn=π1∫−ππf(x)sinnxdx=π2∫0πsinnxdx=nπ2[−(cosnx)]∣∣0π = 2 n π ( − cos n π + 1 ) = 2 n π [ 1 − ( − 1 ) n ] = { 4 n π n = 1 , 3 , 5 , . . . 0 , n = 2 , 4 , 6... =\frac{2}{n\pi}(-\text{cos}n\pi+1)=\frac{2}{n\pi}[1-(-1)^n]=\begin{cases}\frac{4}{n\pi}&n=1,3,5,...\\0,&n=2,4,6...\end{cases} =nπ2(−cosnπ+1)=nπ2[1−(−1)n]={nπ40,n=1,3,5,...n=2,4,6...
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) = 4 π [ sin x + 1 3 sin 3 x + . . . + 1 2 k − 1 sin ( 2 k − 1 ) x + . . . ] f(x)=\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\text{cos}nx+b_n\text{sin}nx)=\frac{4}{\pi}\bigg[\text{sin}x+\frac{1}{3}\text{sin}3x+...+\frac{1}{2k-1}\text{sin}(2k-1)x+...\bigg] f(x)=2a0+n=1∑∞(ancosnx+bnsinnx)=π4[sinx+31sin3x+...+2k−11sin(2k−1)x+...] = 4 π ∑ k = 1 ∞ 1 2 k − 1 sin ( 2 k − 1 ) x ( − ∞ < x < + ∞ , x ≠ m π , m ∈ Z ) =\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{1}{2k-1}\text{sin}(2k-1)x\;\;(-\infty<x<+\infty,x\neq m\pi,m\in Z) =π4k=1∑∞2k−11sin(2k−1)x(−∞<x<+∞,x=mπ,m∈Z)
(二) f ( x ) f(x)\, f(x)只在 [ − π , π ] \,[-\pi,\pi]\, [−π,π]上有定义
如果 f ( x ) \,f(x)\, f(x)只在 [ − π , π ] \,[-\pi,\pi]\, [−π,π]上有定义,且在 [ − π , π ] \,[-\pi,\pi]\, [−π,π]上满足狄利克雷收敛定理的条件,则 f ( x ) \,f(x)\, f(x)经过周期延拓也可以展开成傅里叶级数.
周期延拓:通过补充定义,使原函数成为周期函数. 傅里叶级数研究的核心对象是周期函数,所以对于非周期函数,要设法将其延拓为周期函数. 需要注意的是,并非所有函数都可以延拓为周期函数 (比如定义在全体实数集上的非周期函数).
(1) 周期延拓
通过在 ( − π , π ] \,(-\pi,\pi]\, (−π,π]或 [ − π , π ) \,[-\pi,\pi)\, [−π,π)外补充函数 f ( x ) \,f(x)\, f(x)的定义,使之拓广成以 2 π \,2\pi\, 2π为周期的周期函数 F ( x ) \,F(x) F(x),这种拓广函数定义域的过程称为周期延拓.
注意:题目中的 f ( x ) \,f(x)\, f(x)会给出 ( − π , π ] \,(-\pi,\pi]\, (−π,π]或 [ − π , π ) \,[-\pi,\pi)\, [−π,π)上的表达式.
(2) 周期延拓展开成傅里叶级数
步骤:
step 1. 对
f
(
x
)
\,f(x)\,
f(x)定义域进行周期延拓,得到周期函数
F
(
x
)
\,F(x)\,
F(x).
step 2. 将
F
(
x
)
\,F(x)\,
F(x)展开成傅里叶级数.
step 3. 限制
x
\,x\,
x在
(
−
π
,
π
)
\,(-\pi,\pi)\,
(−π,π)内,此时在
(
−
π
,
π
)
\,(-\pi,\pi)\,
(−π,π)内
F
(
x
)
≡
f
(
x
)
\,F(x)\equiv f(x)
F(x)≡f(x).
step 4. 检查端点处 (
x
=
±
π
x=\pm\pi
x=±π) 是否也收敛于
f
(
x
)
f(x)
f(x).
注意:
经过周期延拓展开成的傅里叶级数,需要考虑单独考虑端点处是否收敛. 因为周期延拓以后,左右端点既可能成为连续点,也可能成为间端点. 如果成为连续点,是符合幂级数展开式条件的,就需要考虑在内. 这一步也可以在完成周期延拓以后就检查.
总之,最后写范围的时候,判断端点处是否需要考虑,就看端点处在延拓以后是否连续. 连续就要加上,不连续就不包含.
(三) f ( x ) f(x)\, f(x)只在 [ 0 , π ] \,[0,\pi]\, [0,π]上有定义
如果 f ( x ) \,f(x)\, f(x)只在 [ 0 , π ] \,[0,\pi]\, [0,π]上有定义,且在 [ 0 , π ] \,[0,\pi]\, [0,π]上满足狄利克雷收敛定理的条件,则 f ( x ) \,f(x)\, f(x)经过奇延拓(或偶延拓)也可以展成傅里叶级数,且此级数必为正弦级数或余弦级数.
奇偶延拓:通过补充定义,使原函数成为奇函数或偶函数.
(1) 奇延拓
通过在 ( − π , 0 ) \,(-\pi,0)\, (−π,0)内补充 f ( x ) \,f(x)\, f(x)的定义,得到定义在 ( − π , π ] \,(-\pi,\pi]\, (−π,π]上的 F ( x ) \,F(x) F(x),使它在 ( − π , π ) \,(-\pi,\pi)\, (−π,π)上成为奇函数 (若 f ( 0 ) ≠ 0 \,f(0)\neq 0 f(0)=0,则规定 F ( 0 ) = 0 \,F(0)=0 F(0)=0). 这种拓广函数定义域的过程称为奇延拓.
(2) 偶延拓
通过在 ( − π , 0 ) \,(-\pi,0)\, (−π,0)内补充 f ( x ) \,f(x)\, f(x)的定义,得到定义在 ( − π , π ] \,(-\pi,\pi]\, (−π,π]上的 F ( x ) \,F(x) F(x),使它在 ( − π , π ) \,(-\pi,\pi)\, (−π,π)上成为偶函数. 这种拓广函数定义域的过程称为偶延拓.
(3) 奇延拓展开成正弦级数
步骤:
step 1. 对
f
(
x
)
\,f(x)\,
f(x)定义域进行奇延拓,得到
F
(
x
)
\,F(x)\,
F(x).
step 2. 将
F
(
x
)
\,F(x)\,
F(x)展开成傅里叶级数,这个级数必为正弦级数.
step 3. 限制
x
\,x\,
x在
(
0
,
π
]
\,(0,\pi]\,
(0,π]内,此时在
(
0
,
π
]
\,(0,\pi]\,
(0,π]内
F
(
x
)
≡
f
(
x
)
\,F(x)\equiv f(x)
F(x)≡f(x).
奇函数展开的傅里叶级数只有正弦项,所以称为正弦级数. 要将函数展开成正弦级数,就要通过奇延拓使函数成为奇函数.
(4) 偶延拓展开成余弦级数
步骤:
step 1. 对
f
(
x
)
\,f(x)\,
f(x)定义域进行偶延拓,得到
F
(
x
)
\,F(x)\,
F(x).
step 2. 将
F
(
x
)
\,F(x)\,
F(x)展开成傅里叶级数,这个级数必为余弦级数.
step 3. 限制
x
\,x\,
x在
(
0
,
π
]
\,(0,\pi]\,
(0,π]内,此时在
(
0
,
π
]
\,(0,\pi]\,
(0,π]内
F
(
x
)
≡
f
(
x
)
\,F(x)\equiv f(x)
F(x)≡f(x).
偶函数展开的傅里叶级数只有余弦项,所以称为余弦级数. 要将函数展开成余弦级数,就要通过偶延拓使函数成为偶函数.
(四) 周期为 2 l \,2l\, 2l的周期函数的傅里叶级数展开
设周期为
2
l
\,2l\,
2l的周期函数
f
(
x
)
\,f(x)\,
f(x)满足狄利克雷收敛定理的条件,则它的傅里叶级数展开式为:
f
(
x
)
=
a
0
2
+
∑
n
=
1
∞
(
a
n
cos
n
π
x
l
+
b
n
sin
n
π
x
l
)
(
x
∈
C
)
\color{Blue}f(x)=\frac{a_0}{2}+\sum^\infty_{n=1}\big(a_n\text{cos}\frac{n\pi x}{l}+b_n\text{sin}\frac{n\pi x}{l}\big)\;\;\;(x\in C)
f(x)=2a0+n=1∑∞(ancoslnπx+bnsinlnπx)(x∈C)
C = { x ∣ f ( x ) = 1 2 [ f ( x − 0 ) + f ( x + 0 ) ] } \color{Blue}C=\big\{x\big|f(x)=\frac{1}{2}[f(x-0)+f(x+0)]\big\} C={x∣∣f(x)=21[f(x−0)+f(x+0)]}
其傅立叶系数为:
a
0
=
1
l
∫
−
l
l
f
(
x
)
d
x
a_0=\frac{1}{l}\int^l_{-l}f(x)\text{d}x
a0=l1∫−llf(x)dx
a n = 1 l ∫ − l l f ( x ) cos n π x l d x ( n = 1 , 2 , 3 , . . . ) a_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{cos}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=l1∫−llf(x)coslnπxdx(n=1,2,3,...)
b n = 1 l ∫ − l l f ( x ) sin n π x l d x ( n = 1 , 2 , 3 , . . . ) b_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{sin}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=l1∫−llf(x)sinlnπxdx(n=1,2,3,...)
方法:与周期为 2 π \,2\pi\, 2π的 f ( x ) \,f(x)\, f(x)的展开方法一样,不再赘述. 二者区别仅在于傅立叶系数和傅里叶级数. 针对不同的区间也可以进行延拓.
4 傅里叶级数的和函数与和函数图形
傅里叶级数展开,只考虑连续点的情况,是把函数展开为傅立叶函数.
而求傅里叶级数的和函数,要综合考虑连续点和间断点的情况. 是把傅里叶级数转换为函数.
考试不会直接考察求已知傅里叶级数的和函数,而是在已知
f
(
x
)
\,f(x)\,
f(x)基础上,再根据狄利克雷收敛定理确定间断点的值,直接写出和函数或者绘制出和函数的图形. 也就是:
s
(
x
)
=
{
f
(
x
)
,
x
∈
C
,
f
(
x
−
0
)
+
f
(
x
+
0
)
2
,
x
∉
C
.
s(x)=\begin{cases}f(x), &x\in C,\\\frac{f(x-0)+f(x+0)}{2},&x\notin C.\end{cases}
s(x)={f(x),2f(x−0)+f(x+0),x∈C,x∈/C.
C ∈ { x ∣ f ( x ) = 1 2 [ f ( x − 0 ) + f ( x + 0 ) ] } C\in\big\{x\big|f(x)=\frac{1}{2}[f(x-0)+f(x+0)]\big\} C∈{x∣∣f(x)=21[f(x−0)+f(x+0)]}
例1. 设 f ( x ) \,f(x)\, f(x)是周期为 2 π \,2\pi\, 2π的周期函数,它在 [ − π , π ) \,[-\pi,\pi)\, [−π,π)上的表达式为:
f ( x ) = { − 1 , − π ⩽ x < 0 , 1 , 0 ⩽ x < π . f(x)=\begin{cases}-1,&-\pi\leqslant x<0,\\1,&0\leqslant x<\pi.\end{cases} f(x)={−1,1,−π⩽x<0,0⩽x<π.将 f ( x ) \,f(x)\, f(x)展开成傅里叶级数,求出级数的和函数,并作出级数的和函数图像.
解:
当 x = k π \,x= k\pi\, x=kπ时,级数收敛于
− 1 + 1 2 = 1 + ( − 1 ) 2 = 0 \color{Blue}\frac{-1+1}{2}=\frac{1+(-1)}{2}=0 2−1+1=21+(−1)=0
当 x ≠ k π \,x\neq k\pi\, x=kπ时,级数收敛于 f ( x ) \,f(x)\, f(x).
a 0 = 1 π ∫ − π π f ( x ) d x = 0 a_0=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\text{d}x=0 a0=π1∫−ππf(x)dx=0a n = 1 π ∫ − π π f ( x ) cos n x d x = 0 a_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{cos}nx\text{d}x=0 an=π1∫−ππf(x)cosnxdx=0
b n = 1 π ∫ − π π f ( x ) sin n x d x = 2 π ∫ 0 π sin n x d x = 2 n π [ − ( cos n x ) ] ∣ 0 π b_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{sin}nx\text{d}x=\frac{2}{\pi}\int^\pi_{0}\text{sin}nx\text{d}x=\frac{2}{n\pi}[-(\text{cos}nx)]\big|^\pi_0 bn=π1∫−ππf(x)sinnxdx=π2∫0πsinnxdx=nπ2[−(cosnx)]∣∣0π = 2 n π ( − cos n π + 1 ) = 2 n π [ 1 − ( − 1 ) n ] = { 4 n π n = 1 , 3 , 5 , . . . 0 , n = 2 , 4 , 6... =\frac{2}{n\pi}(-\text{cos}n\pi+1)=\frac{2}{n\pi}[1-(-1)^n]=\begin{cases}\frac{4}{n\pi}&n=1,3,5,...\\0,&n=2,4,6...\end{cases} =nπ2(−cosnπ+1)=nπ2[1−(−1)n]={nπ40,n=1,3,5,...n=2,4,6...
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) = 4 π [ sin x + 1 3 sin 3 x + . . . + 1 2 k − 1 sin ( 2 k − 1 ) x + . . . ] f(x)=\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\text{cos}nx+b_n\text{sin}nx)=\frac{4}{\pi}\bigg[\text{sin}x+\frac{1}{3}\text{sin}3x+...+\frac{1}{2k-1}\text{sin}(2k-1)x+...\bigg] f(x)=2a0+n=1∑∞(ancosnx+bnsinnx)=π4[sinx+31sin3x+...+2k−11sin(2k−1)x+...] = 4 π ∑ k = 1 ∞ 1 2 k − 1 sin ( 2 k − 1 ) x ( − ∞ < x < + ∞ , x ≠ m π , m ∈ Z ) =\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{1}{2k-1}\text{sin}(2k-1)x\;\;(-\infty<x<+\infty,x\neq m\pi,m\in Z) =π4k=1∑∞2k−11sin(2k−1)x(−∞<x<+∞,x=mπ,m∈Z)
设级数的和函数为 s ( x ) \,s(x) s(x),于是
s ( x ) = { f ( x ) , x ≠ m π , m ∈ Z , 0 , x = m π , m ∈ Z . s(x)=\begin{cases}f(x), &x\neq m\pi,m\in Z,\\0,&x=m\pi,m\in Z.\end{cases} s(x)={f(x),0,x=mπ,m∈Z,x=mπ,m∈Z.和函数图像为:
![]()
(间断点处的函数值"居于中间",可简记为:两头挖空居中间)
例2. 设 f ( x ) = ∣ x − 1 2 ∣ \,f(x)=|x-\frac{1}{2}| f(x)=∣x−21∣, b n = 2 ∫ 0 1 f ( x ) sin n π x d x ( n = 1 , 2 , . . . ) b_n=2\int^1_0f(x)\text{sin}n\pi x\text{d}x\;\;\;(n=1,2,...) bn=2∫01f(x)sinnπxdx(n=1,2,...),令 S ( x ) = ∑ n = 1 ∞ b n sin n π x \,S(x)=\sum^\infty\limits_{n=1}b_n\text{sin}n\pi x S(x)=n=1∑∞bnsinnπx,则 S ( − 9 4 ) = ? \,S(-\frac{9}{4})=?\, S(−49)=?
解: ∑ n = 1 ∞ b n sin n π x \sum^\infty\limits_{n=1}b_n\text{sin}n\pi x\, n=1∑∞bnsinnπx是一个正弦级数,结合 b n = 2 ∫ 0 1 f ( x ) sin n π x d x = ∫ − 1 1 f ( x ) sin n π x d x \,b_n=2\int^1_0f(x)\text{sin}n\pi x\text{d}x=\int^1_{-1}f(x)\text{sin}n\pi x\text{d}x bn=2∫01f(x)sinnπxdx=∫−11f(x)sinnπxdx,
所以 S ( x ) \,S(x)\, S(x)是在 [ 0 , 1 ] \,[0,1]\, [0,1]对 f ( x ) \,f(x)\, f(x)进行奇延拓、再进行周期延拓形成的,以 2 \,2\, 2为周期的和函数.
(画图分析理解) 于是 S ( − 9 4 ) = S ( − 2 − 1 4 ) = S ( − 1 4 ) = − 1 4 \,S(-\frac{9}{4})=S(-2-\frac{1}{4})=S(-\frac{1}{4})=-\frac{1}{4}\, S(−49)=S(−2−41)=S(−41)=−41
对于例2这种题目,可以通过已知条件画图分析,就千万不要先求出级数,再代值计算,非常浪费时间.