高数考研归纳 - 级数 - 傅里叶级数

本文围绕傅里叶级数展开,介绍了三角级数,包括简谐振动、非正弦周期函数等。阐述了傅里叶级数基本概念,如系数、收敛定理等。详细讲解了不同情况下函数的傅里叶级数展开方法,还说明了和函数的求解及图形绘制,结合实例进行了分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击此处查看高数其他板块总结

1 三角级数 (不重要)

(1) 简谐振动函数

y = A   sin ( ω t + φ ) y=A\,\text{sin}(\omega t+\varphi) y=Asin(ωt+φ)

  说明
    (1) 该函数的周期 2 π ω \frac{2\pi}{\omega} ω2π
    (2) 振幅 A A A
    (3) 角频率 ω \omega ω
    (4) 初相 φ \varphi φ

(2) 非正弦周期函数

  对于周期为   T   \,T\, T的非正弦周期函数,可以用一系列以   T   \,T\, T为周期的正弦函数   sin ( n ω t + φ n )   \,\text{sin}(n\omega t+\varphi_n)\, sin(nωt+φn)表示:
f ( t ) = A 0 + ∑ n = 1 ∞ A n sin ( n ω t + φ n )        ( n = 1 , 2 , 3 , . . . ) f(t)=A_0+\sum\limits^\infty_{n=1}A_n\text{sin}(n\omega t+\varphi_n)\;\;\;(n=1,2,3,...) f(t)=A0+n=1Ansin(nωt+φn)(n=1,2,3,...)

  其中, A 0 A_0 A0 A n A_n An φ n \varphi_n φn 均为常数.

  说明
    (1) 这种展开周期函数的行为被称为:谐波分析.
    (2) 直流分量 A 0 A_0 A0
    (3) 一次谐波 A 1 sin ( ω t + φ 1 ) A_1\text{sin}(\omega t+\varphi_1) A1sin(ωt+φ1)
    (4) 二次谐波 A 2 sin ( 2 ω t + φ 2 ) A_2\text{sin}(2\omega t+\varphi_2) A2sin(2ωt+φ2)
    (5) n   n\, n次谐波 A n sin ( n ω t + φ n ) A_n\text{sin}(n\omega t+\varphi_n) Ansin(nωt+φn)

(3) 以   2 l   \,2l\, 2l为周期的三角级数

  对非正弦周期函数的展开进行变形代换可得三角级数
a 0 2 + ∑ n = 1 ∞ ( a n cos n π t l + b n sin n π t l )        ( n = 1 , 2 , 3 , . . . ) \frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\frac{n\pi t}{l}+b_n\text{sin}\frac{n\pi t}{l})\;\;\;(n=1,2,3,...) 2a0+n=1(ancoslnπt+bnsinlnπt)(n=1,2,3,...)

    其中, a 0 a_0 a0 a n a_n an b n b_n bn 均为常数.

(4) 以   2 π   \,2\pi\, 2π为周期的三角级数

a 0 2 + ∑ n = 1 ∞ ( a n cos   n x + b n sin   n x )        ( n = 1 , 2 , 3 , . . . ) \frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)\;\;\;(n=1,2,3,...) 2a0+n=1(ancosnx+bnsinnx)(n=1,2,3,...)

    其中, a 0 a_0 a0 a n a_n an b n b_n bn 均为常数.

(5) 三角函数系

  三角函数系
1 ,   cos x ,   sin x ,   cos 2 x ,   sin 2 x ,   . . . ,   cos n x ,   sin n x ,   . . . 1,\,\text{cos}x,\,\text{sin}x,\,\text{cos}2x,\,\text{sin}2x,\,...,\,\text{cos}nx,\,\text{sin}nx,\,... 1,cosx,sinx,cos2x,sin2x,...,cosnx,sinnx,...

  三角函数系的正交性

    三角函数系中任何两个不同函数的乘积在   [ − π ,   + π ]   \,[-\pi,\,+\pi]\, [π,+π]上的定积分等于   0 \,0 0
∫ − π π cos   n x d x = 0        ( n = 1 ,   2 ,   3 ,   . . . ) \int^\pi_{-\pi}\text{cos}\,nx\text{d}x=0\;\;\;(n=1,\,2,\,3,\,...) ππcosnxdx=0(n=1,2,3,...)

∫ − π π sin   n x d x = 0        ( n = 1 ,   2 ,   3 ,   . . . ) \int^\pi_{-\pi}\text{sin}\,nx\text{d}x=0\;\;\;(n=1,\,2,\,3,\,...) ππsinnxdx=0(n=1,2,3,...)

∫ − π π sin   k x ⋅ cos   n x d x = 0        ( k ,   n = 1 ,   2 ,   3 ,   . . . ) \int^\pi_{-\pi}\text{sin}\,kx\cdot\text{cos}\,nx\text{d}x=0\;\;\;(k,\,n=1,\,2,\,3,\,...) ππsinkxcosnxdx=0(k,n=1,2,3,...)

∫ − π π cos   k x ⋅ cos   n x d x = 0        ( k ,   n = 1 ,   2 ,   3 ,   . . . , k ≠ n ) \int^\pi_{-\pi}\text{cos}\,kx\cdot\text{cos}\,nx\text{d}x=0\;\;\;(k,\,n=1,\,2,\,3,\,..., k\neq n) ππcoskxcosnxdx=0(k,n=1,2,3,...,k=n)

∫ − π π sin   k x ⋅ sin   n x d x = 0        ( k ,   n = 1 ,   2 ,   3 ,   . . . , k ≠ n ) \int^\pi_{-\pi}\text{sin}\,kx\cdot\text{sin}\,nx\text{d}x=0\;\;\;(k,\,n=1,\,2,\,3,\,..., k\neq n) ππsinkxsinnxdx=0(k,n=1,2,3,...,k=n)

    注意
      (1) 1   1\, 1也在三角函数系中,所以三角函数系中任意函数自身在   [ − π ,   + π ]   \,[-\pi,\,+\pi]\, [π,+π]上的定积分也都等于   0 \,0 0.
      (1) 三角函数系中两个相同函数在   [ − π ,   + π ]   \,[-\pi,\,+\pi]\, [π,+π]上的定积分不等于   0 \,0 0,也不是定值.

2 傅里叶级数基本概念

(1) 傅立叶系数

   f ( x )   f(x)\, f(x)是定义在   ( − ∞ , + ∞ )   \,(-\infty,+\infty)\, (,+)上周期为   2 π   \,2\pi\, 2π的函数.
a 0 = 1 π ∫ − π π f ( x ) d x a_0=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{d}x a0=π1ππf(x)dx

a n = 1 π ∫ − π π f ( x ) cos   n x d x        ( n = 1 ,   2 ,   3 ,   . . . ) a_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x){\color{Purple}\text{cos}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=π1ππf(x)cosnxdx(n=1,2,3,...)

b n = 1 π ∫ − π π f ( x ) sin   n x d x        ( n = 1 ,   2 ,   3 ,   . . . ) b_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x){\color{Purple}\text{sin}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=π1ππf(x)sinnxdx(n=1,2,3,...)

  如果通过上面三个积分都存在,那么它们定出的系数   a 0 \,a_0 a0 a 1 a_1 a1 b 1 b_1 b1、…就是   f ( x )   \,f(x)\, f(x)傅立叶系数.

(2) 傅立叶级数 ( Fourier Series \text{Fourier Series} Fourier Series)

  将傅立叶系数代入以   2 π   \,2\pi\, 2π为周期的三角级数即得傅里叶级数
a 0 2 + ∑ n = 1 ∞ ( a n cos   n x + b n sin   n x ) \color{Blue}{\frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)} 2a0+n=1(ancosnx+bnsinnx)

(3) 狄利克雷收敛定理 ( Dirichlet \text{Dirichlet} Dirichlet)

  设   f ( x )   \,f(x)\, f(x)是以   2 π   \,2\pi\, 2π为周期的可积函数,如果   f ( x )   \,f(x)\, f(x)满足:
    (1) 在一个周期内连续或只有有限个第一类间断点;
    (2) 在一个周期内至多只有有限个极值点.
  则   f ( x )   \,f(x)\, f(x)傅里叶级数收敛,且

    当   x   \,x\, x   f ( x )   \,f(x)\, f(x)连续点时,级数收敛于   f ( x ) \,f(x) f(x),即
a 0 2 + ∑ n = 1 ∞ ( a n cos   n x + b n sin   n x ) = f ( x ) \frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)=\color{Blue}f(x) 2a0+n=1(ancosnx+bnsinnx)=f(x)

    当   x   \,x\, x   f ( x )   \,f(x)\, f(x)间断点时,级数收敛于   1 2 [ f ( x − 0 ) + f ( x + 0 ) ] \,\frac{1}{2}[f(x-0)+f(x+0)] 21[f(x0)+f(x+0)],即
a 0 2 + ∑ n = 1 ∞ ( a n cos   n x + b n sin   n x ) = f ( x − 0 ) + f ( x + 0 ) 2 \frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)=\color{Blue}\frac{f(x-0)+f(x+0)}{2} 2a0+n=1(ancosnx+bnsinnx)=2f(x0)+f(x+0)

(4) 正弦级数和余弦函数

正弦级数 (奇函数的傅里叶级数)

  奇函数的傅里叶级数是正弦级数
∑ n = 1 ∞ b n   sin n x \color{Blue}\sum\limits_{n=1}^{\infty}b_n\,\text{sin}nx n=1bnsinnx

b n = 2 π ∫ 0 π f ( x ) sin   n x d x        ( n = 1 ,   2 ,   3 ,   . . . ) b_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{sin}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=π20πf(x)sinnxdx(n=1,2,3,...)

  由来:当   f ( x )   \,f(x)\, f(x)为奇函数时, f ( x ) cos   n x   f(x)\color{Purple}\text{cos}\,nx\, f(x)cosnx是奇函数, f ( x ) sin   n x   f(x){\color{Purple}\text{sin}\,nx}\, f(x)sinnx是偶函数,所以
a n = 0 a_n=0 an=0 b n = 2 π ∫ 0 π f ( x ) sin   n x d x        ( n = 1 ,   2 ,   3 ,   . . . ) b_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{sin}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=π20πf(x)sinnxdx(n=1,2,3,...)

    于是有   ∑ n = 1 ∞ b n sin n x \,\sum\limits_{n=1}^{\infty}b_n\text{sin}nx n=1bnsinnx.

余弦级数 (偶函数的傅里叶级数)

  偶函数的傅里叶级数是余弦级数
a 0 2 + ∑ n = 1 ∞ a n   cos n x \color{Blue}\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\,\text{cos}nx 2a0+n=1ancosnx

a 0 = 2 π ∫ 0 π f ( x ) d x a_0=\frac{2}{\pi}\int^\pi_0 f(x)\text{d}x a0=π20πf(x)dx a n = 2 π ∫ 0 π f ( x ) cos   n x d x        ( n = 1 ,   2 ,   3 ,   . . . ) a_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{cos}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=π20πf(x)cosnxdx(n=1,2,3,...)

  由来:当   f ( x )   \,f(x)\, f(x)为偶函数时, f ( x ) cos   n x   f(x)\color{Purple}\text{cos}\,nx\, f(x)cosnx是偶函数, f ( x ) sin   n x   f(x){\color{Purple}\text{sin}\,nx}\, f(x)sinnx是奇函数,所以
a 0 = 2 π ∫ 0 π f ( x ) d x a_0=\frac{2}{\pi}\int^\pi_0 f(x)\text{d}x a0=π20πf(x)dx a n = 2 π ∫ 0 π f ( x ) cos   n x d x        ( n = 1 ,   2 ,   3 ,   . . . ) a_n=\frac{2}{\pi}\int^\pi_{0}f(x){\color{Purple}\text{cos}\,nx}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=π20πf(x)cosnxdx(n=1,2,3,...) b n = 0 b_n=0 bn=0

    于是有   a 0 2 + ∑ n = 1 ∞ a n   cos n x \,\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\,\text{cos}nx 2a0+n=1ancosnx.

(5) 周期为   2 l   \,2l\, 2l的周期函数的傅里叶级数

a 0 2 + ∑ n = 1 ∞ ( a n cos n π x l + b n sin n π x l ) \color{Blue}\frac{a_0}{2}+\sum^\infty_{n=1}\big(a_n\text{cos}\frac{n\pi x}{l}+b_n\text{sin}\frac{n\pi x}{l}\big) 2a0+n=1(ancoslnπx+bnsinlnπx)

  傅立叶系数为:
a 0 = 1 l ∫ − l l f ( x ) d x a_0=\frac{1}{l}\int^l_{-l}f(x)\text{d}x a0=l1llf(x)dx

a n = 1 l ∫ − l l f ( x ) cos   n π x l d x        ( n = 1 ,   2 ,   3 ,   . . . ) a_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{cos}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=l1llf(x)coslnπxdx(n=1,2,3,...)

b n = 1 l ∫ − l l f ( x ) sin   n π x l d x        ( n = 1 ,   2 ,   3 ,   . . . ) b_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{sin}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=l1llf(x)sinlnπxdx(n=1,2,3,...)

     注意与以   2 π   \,2\pi\, 2π为周期傅里叶级数的傅立叶系数对比.

  当   f ( x )   \,f(x)\, f(x)奇函数时,
f ( x ) = ∑ n = 1 ∞ b n   sin n π x l        ( x ∈ C ) \color{Blue} f(x)=\sum\limits_{n=1}^{\infty}b_n\,\text{sin}\frac{n\pi x}{l}\;\;\;(x\in C) f(x)=n=1bnsinlnπx(xC)

b n = 2 l ∫ 0 l f ( x ) sin   n π x l d x        ( n = 1 ,   2 ,   3 ,   . . . ) b_n=\frac{2}{l}\int^l_{0}f(x){\color{Purple}\text{sin}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=l20lf(x)sinlnπxdx(n=1,2,3,...)

  当   f ( x )   \,f(x)\, f(x)偶函数时,
f ( x ) = a 0 2 + ∑ n = 1 ∞ a n   cos n π x l        ( x ∈ C ) \color{Blue}f(x)=\frac{a_0}{2}+\sum\limits_{n=1}^{\infty}a_n\,\text{cos}\frac{n\pi x}{l}\;\;\;(x\in C) f(x)=2a0+n=1ancoslnπx(xC)

a 0 = 2 l ∫ 0 l f ( x ) d x a_0=\frac{2}{l}\int^l_{0}f(x)\text{d}x a0=l20lf(x)dx

a n = 2 l ∫ 0 l f ( x ) cos   n π x l d x        ( n = 1 ,   2 ,   3 ,   . . . ) a_n=\frac{2}{l}\int^l_{0}f(x){\color{Purple}\text{cos}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=l20lf(x)coslnπxdx(n=1,2,3,...)

3 傅里叶级数展开

(一) 将周期为   2 π   \,2\pi\, 2π   f ( x )   \,f(x)\, f(x)展开成傅里叶级数

  原理:根据收敛定理,函数   f ( x )   \,f(x)\, f(x)展开的傅里叶级数在连续点处收敛于该点的函数值,而在间断点收敛于该点左右极限的算术平均值. 所以函数   f ( x )   \,f(x)\, f(x)的傅里叶级数展开式为:
f ( x ) ∼ s ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos   n x + b n sin   n x ) , \color{Blue}f(x) \sim s(x)= {\frac{a_0}{2}+\sum\limits^\infty_{n=1}(a_n\text{cos}\,nx+b_n\text{sin}\,nx)}, f(x)s(x)=2a0+n=1(ancosnx+bnsinnx) x ∈ { x ∣ f ( x ) = 1 2 [ f ( x − 0 ) + f ( x + 0 ) ] } \color{Blue}x\in\big\{x\big|f(x)=\frac{1}{2}[f(x-0)+f(x+0)]\big\} x{xf(x)=21[f(x0)+f(x+0)]}

     f ( x ) ∼ s ( x ) f(x) \sim s(x) f(x)s(x) f ( x )   f(x)\, f(x)展开为傅里叶级数   s ( x ) \,s(x) s(x).

  注意:特别注意傅立叶级数展开式   x   \,x\, x满足的条件. 这就是为什么我们不能认为   f ( x )   \,f(x)\, f(x)等于傅里叶级数,而要说是   f ( x )   \,f(x)\, f(x)展开成傅里叶级数. 因为根据狄利克雷收敛定理,函数   f ( x )   \,f(x)\, f(x)展开的傅里叶级数在连续点处收敛于该点的函数值,而在间断点收敛于该点左右极限的算术平均值. 也就是说, f ( x )   f(x)\, f(x)与傅里叶级数相等,当且仅当   f ( x )   \,f(x)\, f(x)连续. 否则,在   f ( x )   \,f(x)\, f(x)的间断点处,傅里叶级数会取左右极限的算术平均值.

  步骤
    step 1. 确定函数连续的部分 (找出间断点).
    step 2. 计算傅立叶系数   a 0 \,a_0 a0 a n a_n an b n b_n bn ( n = 1 , 2 , 3 , . . . n=1,2,3,... n=1,2,3,...).
    step 3. 将傅里叶系数代入傅里叶级数展开式即可.

  例. 设   f ( x )   \,f(x)\, f(x)是周期为   2 π   \,2\pi\, 2π的周期函数,它在   [ − π , π )   \,[-\pi,\pi)\, [π,π)上的表达式为:
f ( x ) = { − 1 , − π ⩽ x < 0 , 1 , 0 ⩽ x < π . f(x)=\begin{cases}-1,&-\pi\leqslant x<0,\\1,&0\leqslant x<\pi.\end{cases} f(x)={1,1,πx<0,0x<π.

    将   f ( x )   \,f(x)\, f(x)展开成傅里叶级数.
  
  解:
    当   x ≠ k π   \,x\neq k\pi\, x=kπ时,级数收敛于   f ( x )   \,f(x)\, f(x).
a 0 = 1 π ∫ − π π f ( x ) d x = 0 a_0=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\text{d}x=0 a0=π1ππf(x)dx=0

a n = 1 π ∫ − π π f ( x ) cos n x d x = 0 a_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{cos}nx\text{d}x=0 an=π1ππf(x)cosnxdx=0

b n = 1 π ∫ − π π f ( x ) sin n x d x = 2 π ∫ 0 π sin n x d x = 2 n π [ − ( cos n x ) ] ∣ 0 π b_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{sin}nx\text{d}x=\frac{2}{\pi}\int^\pi_{0}\text{sin}nx\text{d}x=\frac{2}{n\pi}[-(\text{cos}nx)]\big|^\pi_0 bn=π1ππf(x)sinnxdx=π20πsinnxdx=nπ2[(cosnx)]0π = 2 n π ( − cos n π + 1 ) = 2 n π [ 1 − ( − 1 ) n ] = { 4 n π n = 1 , 3 , 5 , . . . 0 , n = 2 , 4 , 6... =\frac{2}{n\pi}(-\text{cos}n\pi+1)=\frac{2}{n\pi}[1-(-1)^n]=\begin{cases}\frac{4}{n\pi}&n=1,3,5,...\\0,&n=2,4,6...\end{cases} =nπ2(cosnπ+1)=nπ2[1(1)n]={nπ40,n=1,3,5,...n=2,4,6...

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) = 4 π [ sin x + 1 3 sin 3 x + . . . + 1 2 k − 1 sin ( 2 k − 1 ) x + . . . ] f(x)=\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\text{cos}nx+b_n\text{sin}nx)=\frac{4}{\pi}\bigg[\text{sin}x+\frac{1}{3}\text{sin}3x+...+\frac{1}{2k-1}\text{sin}(2k-1)x+...\bigg] f(x)=2a0+n=1(ancosnx+bnsinnx)=π4[sinx+31sin3x+...+2k11sin(2k1)x+...] = 4 π ∑ k = 1 ∞ 1 2 k − 1 sin ( 2 k − 1 ) x      ( − ∞ < x < + ∞ , x ≠ m π , m ∈ Z ) =\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{1}{2k-1}\text{sin}(2k-1)x\;\;(-\infty<x<+\infty,x\neq m\pi,m\in Z) =π4k=12k11sin(2k1)x(<x<+x=mπmZ)

(二) f ( x )   f(x)\, f(x)只在   [ − π , π ]   \,[-\pi,\pi]\, [π,π]上有定义

  如果   f ( x )   \,f(x)\, f(x)只在   [ − π , π ]   \,[-\pi,\pi]\, [π,π]上有定义,且在   [ − π , π ]   \,[-\pi,\pi]\, [π,π]上满足狄利克雷收敛定理的条件,则   f ( x )   \,f(x)\, f(x)经过周期延拓也可以展开成傅里叶级数.

  周期延拓通过补充定义,使原函数成为周期函数. 傅里叶级数研究的核心对象是周期函数,所以对于非周期函数,要设法将其延拓为周期函数. 需要注意的是,并非所有函数都可以延拓为周期函数 (比如定义在全体实数集上的非周期函数).

(1) 周期延拓

  通过在   ( − π , π ]   \,(-\pi,\pi]\, (π,π]   [ − π , π )   \,[-\pi,\pi)\, [π,π)外补充函数   f ( x )   \,f(x)\, f(x)的定义,使之拓广成以   2 π   \,2\pi\, 2π为周期的周期函数   F ( x ) \,F(x) F(x),这种拓广函数定义域的过程称为周期延拓.

  注意:题目中的   f ( x )   \,f(x)\, f(x)会给出   ( − π , π ]   \,(-\pi,\pi]\, (π,π]   [ − π , π )   \,[-\pi,\pi)\, [π,π)上的表达式.

(2) 周期延拓展开成傅里叶级数

  步骤
    step 1.   f ( x )   \,f(x)\, f(x)定义域进行周期延拓,得到周期函数   F ( x )   \,F(x)\, F(x).
    step 2.   F ( x )   \,F(x)\, F(x)展开成傅里叶级数.
    step 3. 限制   x   \,x\, x   ( − π , π )   \,(-\pi,\pi)\, (π,π)内,此时在   ( − π , π )   \,(-\pi,\pi)\, (π,π)   F ( x ) ≡ f ( x ) \,F(x)\equiv f(x) F(x)f(x).
    step 4. 检查端点处 ( x = ± π x=\pm\pi x=±π) 是否也收敛于 f ( x ) f(x) f(x).

  注意
    经过周期延拓展开成的傅里叶级数,需要考虑单独考虑端点处是否收敛. 因为周期延拓以后,左右端点既可能成为连续点,也可能成为间端点. 如果成为连续点,是符合幂级数展开式条件的,就需要考虑在内. 这一步也可以在完成周期延拓以后就检查.
    总之,最后写范围的时候,判断端点处是否需要考虑,就看端点处在延拓以后是否连续. 连续就要加上,不连续就不包含.

(三) f ( x )   f(x)\, f(x)只在   [ 0 , π ]   \,[0,\pi]\, [0,π]上有定义

  如果   f ( x )   \,f(x)\, f(x)只在   [ 0 , π ]   \,[0,\pi]\, [0,π]上有定义,且在   [ 0 , π ]   \,[0,\pi]\, [0,π]上满足狄利克雷收敛定理的条件,则   f ( x )   \,f(x)\, f(x)经过奇延拓(或偶延拓)也可以展成傅里叶级数,且此级数必为正弦级数余弦级数.

  奇偶延拓通过补充定义,使原函数成为奇函数或偶函数.

(1) 奇延拓

    通过在   ( − π , 0 )   \,(-\pi,0)\, (π,0)内补充   f ( x )   \,f(x)\, f(x)的定义,得到定义在   ( − π , π ]   \,(-\pi,\pi]\, (π,π]上的   F ( x ) \,F(x) F(x),使它在   ( − π , π )   \,(-\pi,\pi)\, (π,π)上成为奇函数 (若   f ( 0 ) ≠ 0 \,f(0)\neq 0 f(0)=0,则规定   F ( 0 ) = 0 \,F(0)=0 F(0)=0). 这种拓广函数定义域的过程称为奇延拓.

(2) 偶延拓

    通过在   ( − π , 0 )   \,(-\pi,0)\, (π,0)内补充   f ( x )   \,f(x)\, f(x)的定义,得到定义在   ( − π , π ]   \,(-\pi,\pi]\, (π,π]上的   F ( x ) \,F(x) F(x),使它在   ( − π , π )   \,(-\pi,\pi)\, (π,π)上成为偶函数. 这种拓广函数定义域的过程称为偶延拓.

(3) 奇延拓展开成正弦级数

  步骤
    step 1.   f ( x )   \,f(x)\, f(x)定义域进行奇延拓,得到   F ( x )   \,F(x)\, F(x).
    step 2.   F ( x )   \,F(x)\, F(x)展开成傅里叶级数,这个级数必为正弦级数.
    step 3. 限制   x   \,x\, x   ( 0 , π ]   \,(0,\pi]\, (0,π]内,此时在   ( 0 , π ]   \,(0,\pi]\, (0,π]   F ( x ) ≡ f ( x ) \,F(x)\equiv f(x) F(x)f(x).

  奇函数展开的傅里叶级数只有正弦项,所以称为正弦级数. 要将函数展开成正弦级数,就要通过奇延拓使函数成为奇函数.

(4) 偶延拓展开成余弦级数

  步骤
    step 1.   f ( x )   \,f(x)\, f(x)定义域进行偶延拓,得到   F ( x )   \,F(x)\, F(x).
    step 2.   F ( x )   \,F(x)\, F(x)展开成傅里叶级数,这个级数必为余弦级数.
    step 3. 限制   x   \,x\, x   ( 0 , π ]   \,(0,\pi]\, (0,π]内,此时在   ( 0 , π ]   \,(0,\pi]\, (0,π]   F ( x ) ≡ f ( x ) \,F(x)\equiv f(x) F(x)f(x).

  偶函数展开的傅里叶级数只有余弦项,所以称为余弦级数. 要将函数展开成余弦级数,就要通过偶延拓使函数成为偶函数.

(四) 周期为   2 l   \,2l\, 2l的周期函数的傅里叶级数展开

  设周期为   2 l   \,2l\, 2l的周期函数   f ( x )   \,f(x)\, f(x)满足狄利克雷收敛定理的条件,则它的傅里叶级数展开式为:
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n π x l + b n sin n π x l )        ( x ∈ C ) \color{Blue}f(x)=\frac{a_0}{2}+\sum^\infty_{n=1}\big(a_n\text{cos}\frac{n\pi x}{l}+b_n\text{sin}\frac{n\pi x}{l}\big)\;\;\;(x\in C) f(x)=2a0+n=1(ancoslnπx+bnsinlnπx)(xC)

C = { x ∣ f ( x ) = 1 2 [ f ( x − 0 ) + f ( x + 0 ) ] } \color{Blue}C=\big\{x\big|f(x)=\frac{1}{2}[f(x-0)+f(x+0)]\big\} C={xf(x)=21[f(x0)+f(x+0)]}

  其傅立叶系数为:
a 0 = 1 l ∫ − l l f ( x ) d x a_0=\frac{1}{l}\int^l_{-l}f(x)\text{d}x a0=l1llf(x)dx

a n = 1 l ∫ − l l f ( x ) cos   n π x l d x        ( n = 1 ,   2 ,   3 ,   . . . ) a_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{cos}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) an=l1llf(x)coslnπxdx(n=1,2,3,...)

b n = 1 l ∫ − l l f ( x ) sin   n π x l d x        ( n = 1 ,   2 ,   3 ,   . . . ) b_n=\frac{1}{l}\int^l_{-l}f(x){\color{Purple}\text{sin}\,\frac{n\pi x}l{}}\text{d}x\;\;\;(n=1,\,2,\,3,\,...) bn=l1llf(x)sinlnπxdx(n=1,2,3,...)

  方法:与周期为   2 π   \,2\pi\, 2π   f ( x )   \,f(x)\, f(x)的展开方法一样,不再赘述. 二者区别仅在于傅立叶系数和傅里叶级数. 针对不同的区间也可以进行延拓.

4 傅里叶级数的和函数与和函数图形

  傅里叶级数展开只考虑连续点的情况,是把函数展开为傅立叶函数.
  而求傅里叶级数的和函数,要综合考虑连续点和间断点的情况. 是把傅里叶级数转换为函数.

  考试不会直接考察求已知傅里叶级数的和函数,而是在已知   f ( x )   \,f(x)\, f(x)基础上,再根据狄利克雷收敛定理确定间断点的值,直接写出和函数或者绘制出和函数的图形. 也就是:
s ( x ) = { f ( x ) , x ∈ C , f ( x − 0 ) + f ( x + 0 ) 2 , x ∉ C . s(x)=\begin{cases}f(x), &x\in C,\\\frac{f(x-0)+f(x+0)}{2},&x\notin C.\end{cases} s(x)={f(x),2f(x0)+f(x+0),xC,x/C.

C ∈ { x ∣ f ( x ) = 1 2 [ f ( x − 0 ) + f ( x + 0 ) ] } C\in\big\{x\big|f(x)=\frac{1}{2}[f(x-0)+f(x+0)]\big\} C{xf(x)=21[f(x0)+f(x+0)]}

  例1. 设   f ( x )   \,f(x)\, f(x)是周期为   2 π   \,2\pi\, 2π的周期函数,它在   [ − π , π )   \,[-\pi,\pi)\, [π,π)上的表达式为:
f ( x ) = { − 1 , − π ⩽ x < 0 , 1 , 0 ⩽ x < π . f(x)=\begin{cases}-1,&-\pi\leqslant x<0,\\1,&0\leqslant x<\pi.\end{cases} f(x)={1,1,πx<0,0x<π.

    将   f ( x )   \,f(x)\, f(x)展开成傅里叶级数,求出级数的和函数,并作出级数的和函数图像.
  
  解:
    当   x = k π   \,x= k\pi\, x=kπ时,级数收敛于
− 1 + 1 2 = 1 + ( − 1 ) 2 = 0 \color{Blue}\frac{-1+1}{2}=\frac{1+(-1)}{2}=0 21+1=21+(1)=0
    当   x ≠ k π   \,x\neq k\pi\, x=kπ时,级数收敛于   f ( x )   \,f(x)\, f(x).
a 0 = 1 π ∫ − π π f ( x ) d x = 0 a_0=\frac{1}{\pi}\int^{\pi}_{-\pi}f(x)\text{d}x=0 a0=π1ππf(x)dx=0

a n = 1 π ∫ − π π f ( x ) cos n x d x = 0 a_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{cos}nx\text{d}x=0 an=π1ππf(x)cosnxdx=0

b n = 1 π ∫ − π π f ( x ) sin n x d x = 2 π ∫ 0 π sin n x d x = 2 n π [ − ( cos n x ) ] ∣ 0 π b_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)\text{sin}nx\text{d}x=\frac{2}{\pi}\int^\pi_{0}\text{sin}nx\text{d}x=\frac{2}{n\pi}[-(\text{cos}nx)]\big|^\pi_0 bn=π1ππf(x)sinnxdx=π20πsinnxdx=nπ2[(cosnx)]0π = 2 n π ( − cos n π + 1 ) = 2 n π [ 1 − ( − 1 ) n ] = { 4 n π n = 1 , 3 , 5 , . . . 0 , n = 2 , 4 , 6... =\frac{2}{n\pi}(-\text{cos}n\pi+1)=\frac{2}{n\pi}[1-(-1)^n]=\begin{cases}\frac{4}{n\pi}&n=1,3,5,...\\0,&n=2,4,6...\end{cases} =nπ2(cosnπ+1)=nπ2[1(1)n]={nπ40,n=1,3,5,...n=2,4,6...

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos n x + b n sin n x ) = 4 π [ sin x + 1 3 sin 3 x + . . . + 1 2 k − 1 sin ( 2 k − 1 ) x + . . . ] f(x)=\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\text{cos}nx+b_n\text{sin}nx)=\frac{4}{\pi}\bigg[\text{sin}x+\frac{1}{3}\text{sin}3x+...+\frac{1}{2k-1}\text{sin}(2k-1)x+...\bigg] f(x)=2a0+n=1(ancosnx+bnsinnx)=π4[sinx+31sin3x+...+2k11sin(2k1)x+...] = 4 π ∑ k = 1 ∞ 1 2 k − 1 sin ( 2 k − 1 ) x      ( − ∞ < x < + ∞ , x ≠ m π , m ∈ Z ) =\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{1}{2k-1}\text{sin}(2k-1)x\;\;(-\infty<x<+\infty,x\neq m\pi,m\in Z) =π4k=12k11sin(2k1)x(<x<+x=mπmZ)

  设级数的和函数为   s ( x ) \,s(x) s(x),于是
s ( x ) = { f ( x ) , x ≠ m π , m ∈ Z , 0 , x = m π , m ∈ Z . s(x)=\begin{cases}f(x), &x\neq m\pi,m\in Z,\\0,&x=m\pi,m\in Z.\end{cases} s(x)={f(x),0,x=mπmZ,x=mπmZ.

  和函数图像为:

    (间断点处的函数值"居于中间",可简记为:两头挖空居中间)

  例2. 设   f ( x ) = ∣ x − 1 2 ∣ \,f(x)=|x-\frac{1}{2}| f(x)=x21 b n = 2 ∫ 0 1 f ( x ) sin n π x d x        ( n = 1 , 2 , . . . ) b_n=2\int^1_0f(x)\text{sin}n\pi x\text{d}x\;\;\;(n=1,2,...) bn=201f(x)sinnπxdx(n=1,2,...),令   S ( x ) = ∑ n = 1 ∞ b n sin n π x \,S(x)=\sum^\infty\limits_{n=1}b_n\text{sin}n\pi x S(x)=n=1bnsinnπx,则   S ( − 9 4 ) = ?   \,S(-\frac{9}{4})=?\, S(49)=?

  解: ∑ n = 1 ∞ b n sin n π x   \sum^\infty\limits_{n=1}b_n\text{sin}n\pi x\, n=1bnsinnπx是一个正弦级数,结合   b n = 2 ∫ 0 1 f ( x ) sin n π x d x = ∫ − 1 1 f ( x ) sin n π x d x \,b_n=2\int^1_0f(x)\text{sin}n\pi x\text{d}x=\int^1_{-1}f(x)\text{sin}n\pi x\text{d}x bn=201f(x)sinnπxdx=11f(x)sinnπxdx
    所以   S ( x )   \,S(x)\, S(x)是在   [ 0 , 1 ]   \,[0,1]\, [0,1]   f ( x )   \,f(x)\, f(x)进行奇延拓、再进行周期延拓形成的,以   2   \,2\, 2为周期的和函数.
    (画图分析理解) 于是   S ( − 9 4 ) = S ( − 2 − 1 4 ) = S ( − 1 4 ) = − 1 4   \,S(-\frac{9}{4})=S(-2-\frac{1}{4})=S(-\frac{1}{4})=-\frac{1}{4}\, S(49)=S(241)=S(41)=41

  对于例2这种题目,可以通过已知条件画图分析,就千万不要先求出级数,再代值计算,非常浪费时间.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值