图像特征提取之LBP算子

LBP(Local Binary Patterns)是一种有效的图像特征提取方法,适用于人脸识别等应用。该算法通过对图像中的每个像素及其邻域进行二值化处理来提取局部纹理特征,并具有良好的抗噪性和细节保留能力。通常将LBP特征用于构建直方图并结合SVM等分类器进行识别。
摘要由CSDN通过智能技术生成

关注公众号,获取更多信息

LBPLocal Binary Patterns)是一直直接,且行之有效的图像特征提取算子。其基本思想是:对于图中某个像素(i,j),取其一定的邻域,例如3*3。对于邻域内的每个像素(p,q),如果这个像素(p,q)值大于等于中心像素(i,j)值,则将这个(p,q)像素记为1,否则记为0。然后将邻域内所有的1和0,按照一定的顺序,组成2进制串,就构成了中间像素的局部2值特征,或者将此2进制串转换为十进制也可以。注意几点:

1)邻域像素是1,还是0,可以自己定义,例如小于记为1

2)从哪个邻域像素开始组成二进制串也可以自己定

3)邻域大小也可以自己定

4)比较的时候,也可以加阈值,例如高于中心像素20才记为1。

 

1、合理性

首先,LBP算法对噪声有一定的鲁棒性。

其次,LBP算法在一个极小的邻域内考虑了各个像素的影响,而不是舍弃

再次,对细节有很好的的保留作用

 

最后,计算方法自由

 

 

 

 

3、典型应用

一个典型的应用是人脸识别

人脸图像在做LBP变换后,得到的仍然是一幅图像。图像中对应位置的值就是LBP值。那么有了LBP值如何进行识别呢?识别就是将检测到的人脸与数据库中人脸进行比较。比较过程中采用的就是人脸特征。那么如何把LBP值转换为人脸特征,然后进行比对呢?大致过程可以进行如下的描述(大致类似于HoG特征的提取):(人脸检测可以参考我的其他文章,用adaboost实现)

1)对检测到的人脸图像做旋转不变LBP变换;

2)将变换后的图像分成若干个子块,对每个子块统计其LBP直方图;

3)将所有子块的统计直方图连接到一起,例如,直接首尾拼接;

4)通过比较待识别的人脸和数据库人脸,进而实现识别,这种对比的方法有很多种,例如直接进行相似度比较,或者卡方比较等。

5)有时候会借助于SVM来进行识别和分类。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值