自动化规则的业务背景
在许多金融公司的风控介绍中,都说自己用到了人工智能,机器学习,深度学习模型等技术,在人工智能的风口上,但凡讨论点技术问题都得跟AI沾点边,不说自己会点机器学习模型都不好意思出门。但是在生产应用中,人工智能模型,或者说机器学习模型存在着不可解释的问题,在我们公司内部,使用最广的还是规则引擎,目前来说还是没有一个可以完全脱离规则的金融公司。研究规则的自动生成具有其现实的意义,不单单是规则对于人来说易于理解,没有机器学习的门槛那么高,同时规则对于业务人员来说其可控性也是最好的。
公司的风控后台的规则模块需要支持单条规则,组合规则以及评分规则等基本规则功能。单条和组合规则都是业务人员对数据理解后,抽象出来的数据组合逻辑,在设计过程中,需要对数据进行详尽的分析,测试,模拟等操作。人工规则的生成要经历比较长时间的数据分析过程,同时需要手动的部署到风控引擎上。在这样的业务背景下,我们引入了DarwinML自动化规则生成系统,DarwinML自动化规则生成有效的解决了业务人员设计规则的现实问题:
- 数据自动分析组合
- 基于数据的可定量的解释
- 连接规则引擎,一键部署
DarwinML自动化规则生成可以帮助我们自动的生成规则。自动对数据进行分析,拆解多个树类模型算法得到其执行路径并转化为可运行的规则,基于DarwinML设计的优化损失函数,对规则的生产进行迭代优化,得到最优的规则集合。其缩短了人工规则的设计过程,提升了规则设计的效率和精确度。