流式推理引擎对比

本文对比了DarwinML Inference、MetaFlow、AirFlow和MLFlow四个流式推理引擎,分析了它们在数据科学家、运营商和终端用户角度的优缺点。DarwinML Inference以其全面的功能,如工作流、数据流处理和弹性部署,成为商用的首选。而MetaFlow、AirFlow和MLFlow在不同方面存在不足,如对数据流处理的支持和云平台的兼容性。
摘要由CSDN通过智能技术生成

什么是流式推理引擎

推理引擎是将人工智能模型转化为生产力的关键部件。它衔接数据科学家、终端用户和运营商,在典型的商业场景中,运营商将数据科学家研究的人工智能模型,部署于计算平台,并引导终端用户的请求在计算平台各模型间流转,最终形成客户期望的响应,并在其终端展示。

流式推理引擎是推理引擎的一种工作形态,他将人工智能模型及相关的周边处理,以工作流的方式组织起来,对外提供更能适配客户业务需求的推理服务。

它工作的时候,数据从终端客户或设备开始,在推理引擎的驱动下,按照既定的工作流业务逻辑,在各智能和非智能处理节点间流动,最终以业务要求的形态流出平台,被客户系统消费。

需要什么样的流式推理引擎

在这个端到端的典型场景中,关联的各方对于推理引擎的特性、技术、指标等有不同的考量。

数据科学家提供基础的人工智能模型,由于人工智能技术的飞速发展,科学家们多会广泛尝试各种人工智能底层框架和第三方算法库,以期望最大限度借力技术的发展,展现自己模型的特性。对于协助其能力变现的运营商所采用的推理引擎,当然期望其对底层人工智能框架和算法库的支持有足够的灵活性,减少模型移植的代价,保持甚至提高模型的性能,并自行解决商业化场景中的工程问题。

运营商运维数据科学家的人工智能模型,服务于终端客户以实现利润最大化。他们更多会倾向于用稳定的技术、设备,用较少的硬件和人力资源,实现其商业化的服务目标。其对推理引擎的选择,在迎合数据科学家需求、满足终端用户功能和服务质量要求的同时,会平衡考虑资源、人力的初期投入及长期维护成本以维持其竞争力。

终端用户从运营商处消费人工智能模型,寻求服务接入的便利

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值