一、整式
1. 同底数幂的乘法
公式: a m ∗ a n = a m + n a^m * a^n = a^{m+n} am∗an=am+n
例: a 3 ∗ a 2 = a 3 + 2 = a 5 a^3 * a^2 = a^{3+2}=a^5 a3∗a2=a3+2=a5
2. 幂的乘方
公式: ( a m ) n = a m ∗ n (a^m)^n= a^{m*n} (am)n=am∗n
例: ( a 2 ) 6 = a 2 ∗ 6 = a 12 (a^2)^6= a^{2*6}=a^{12} (a2)6=a2∗6=a12
3. 积的乘方
公式: ( a b ) n = a n ∗ b n = a n b n (ab)^n=a^n * b^n = a^nb^n (ab)n=an∗bn=anbn
例: ( a b ) 5 = a 5 ∗ b 5 = a 5 b 5 (ab)^5=a^5 * b^5 = a^5b^5 (ab)5=a5∗b5=a5b5
4. 乘法分配律
公式: a ∗ ( b + c ) = a b + a c a*(b+c)=ab+ac a∗(b+c)=ab+ac
例: 2 x ∗ ( 3 x + y ) = 2 x ∗ 3 x + 2 x ∗ y = 6 x 2 + 2 x y 2x*(3x+y) = 2x*3x + 2x * y = 6x^2+2xy 2x∗(3x+y)=2x∗3x+2x∗y=6x2+2xy
5. 同底数幂的除法
公式: a m ÷ a n = a m − n a^m \div a^n = a^{m-n} am÷an=am−n
例: 6 a 4 b 2 c ÷ 2 a 2 b = 3 a 4 − 2 b 2 − 1 c 1 − 0 = 3 a 2 b c 6a^4b^2c \div 2a^2b = 3a^{4-2}b^{2-1}c^{1-0}=3a^2bc 6a4b2c÷2a2b=3a4−2b2−1c1−0=3a2bc
二、分式
1. 分式的乘法
公式: b a ∗ d c = b ∗ d a ∗ c \frac ba * \frac dc = \frac {b * d}{a * c} ab∗cd=a∗cb∗d
例: 1 3 ∗ 2 3 = 1 ∗ 2 3 ∗ 3 = 2 9 \frac 13 * \frac 23 = \frac {1 * 2}{3 * 3}=\frac 29 31∗32=3∗31∗2=92
2. 分式的除法
公式: b a ÷ d c = b a ∗ c d \frac ba \div \frac dc = \frac ba * \frac cd ab÷cd=ab∗dc
例: 1 3 ÷ 2 3 = 1 3 ∗ 3 2 = 3 6 = 1 2 \frac 13 \div \frac 23 = \frac 13 * \frac 32 =\frac 36 = \frac 12 31÷32=31∗23=63=21
3. 分式的乘方
公式: ( b a ) n = b n a n (\frac ba)^n = \frac {b^n}{a^n} (ab)n=anbn
例: ( 2 3 ) 2 = 2 2 3 2 = 4 9 (\frac 23)^2 = \frac {2^2}{3^2}=\frac 49 (32)2=3222=94
4. 分式的最简公分母
最简公分母就是找到多个分式间的公分母,在分式加减和分式方程化简时会使用。
分式加减时,当异分母相加减时,需要先找到最简公分母进行通分,然后在进行分子的加减
分式方程化简时,需要先找到最简公分母,然后对分式进行化简,也就是利用最简公分母去掉分式的分母,最后再计算
找到最简公分母的规则:
1. 当所有分式都是单项式时:
(1) 找到所有分式的分母中的单项式的系数,然后取它们的最小公倍数
(2) 将所有分式的分母中的单项式的字母都罗列出来,当有字母相同时,留下次数高的
(3) 将最小公倍数和留下的字母进行拼接,就是最简公分母
2. 当分式中有多项式时,先判断多项式能否因式分解,能分解则先分解,不能分解就把整个多项式想象成单项式中的一个字母,然后再按照单项式的规则找到最简公分母
下面分别用单项式和多项式举例:
单项式,分式加法,例:
1 3 a 2 b c + 1 2 a b 2 = 两个分式中分母的系数分别是 3 和 2 ,所以它们的最小公倍数是 6 = 两个分式中分母的字母有: a 、 b 、 c ,遇见相同字母留下最高次数的字母,所以是 a 2 b 2 c = 将最小公倍数和留下的字母进行拼接,得到最简公分母: 6 a 2 b 2 c = 然后让两个分式的分母都变成 6 a 2 b 2 c = 1 3 a 2 b c ∗ 2 b 2 b = 2 b 6 a 2 b 2 c = 1 2 a b 2 ∗ 3 a c 3 a c = 3 a c 6 a 2 b 2 c = 2 b 6 a 2 b 2 c + 3 a c 6 a 2 b 2 c = 2 b + 3 a c 6 a 2 b 2 c \frac {1} {3a^2bc} + \frac {1} {2ab^2}\\ =两个分式中分母的系数分别是3和2,所以它们的最小公倍数是 6\\ =两个分式中分母的字母有:a、b、c,遇见相同字母留下最高次数的字母,所以是a^2b^2c\\ =将最小公倍数和留下的字母进行拼接,得到最简公分母:6a^2b^2c\\ =然后让两个分式的分母都变成6a^2b^2c\\ =\frac {1} {3a^2bc} * \frac {2b}{2b}= \frac {2b}{6a^2b^2c}\\ =\frac {1} {2ab^2} * \frac {3ac}{3ac}= \frac {3ac}{6a^2b^2c}\\ =\frac {2b}{6a^2b^2c} + \frac {3ac}{6a^2b^2c} = \frac {2b + 3ac}{6a^2b^2c} 3a2bc1+2ab21=两个分式中分母的系数分别是3和2,所以它们的最小公倍数是6=两个分式中分母的字母有:a、b、c,遇见相同字母留下最高次数的字母,所以是a2b2c=将最小公倍数和留下的字母进行拼接,得到最简公分母:6a2b2c=然后让两个分式的分母都变成6a2b2c=3a2bc1∗2b2b=6a2b2c2b=2ab21∗3ac3ac=6a2b2c3ac=6a2b2c2b+6a2b2c3ac=6a2b2c2b+3ac
多项式,分式方程化简,例:
2 ∗ 8000 x = 17600 x + 4 = 两个分式的分母分别是单项式 x 和多项式 x + 4 ,先判断 x + 4 能否分解 = x + 4 不能分解,那么就把 x + 4 想象成单项式中的一个字母,然后套用单项式的规则找到最简公分母 = 两个分式中分母 x 和 x + 4 的系数都是 1 ,所以最小公倍数就是 1 = 两个分式中分母的字母有: x 、 x + 4 ,并且没有相同的字母,所以留下 x 和 x + 4 = 将最小公倍数和留下的字母进行拼接,得到最简公分母: 1 ( x ) ( x + 4 ) = x ( x + 4 ) = 得到最简公分母后就可以对分式方程进行化简 = 8000 x ∗ x ( x + 4 ) = 8000 ( x + 4 ) = 17600 x + 4 ∗ x ( x + 4 ) = 17600 x = 将两个化简后的分式带回到方程中 = 2 ∗ 8000 ( x + 4 ) = 17600 x = 16000 ( x + 4 ) = 17600 x = 16000 x + 64000 = 17600 x = x = 40 2 * \frac {8000}{x}=\frac {17600}{x+4}\\ =两个分式的分母分别是单项式x和多项式x +4 ,先判断 x + 4 能否分解\\ =x + 4不能分解,那么就把 x + 4 想象成单项式中的一个字母,然后套用单项式的规则找到最简公分母\\ =两个分式中分母x和x+4的系数都是1,所以最小公倍数就是1\\ =两个分式中分母的字母有:x、x+4,并且没有相同的字母,所以留下x和x+4\\ =将最小公倍数和留下的字母进行拼接,得到最简公分母:1(x)(x+4) = x(x+4)\\ =得到最简公分母后就可以对分式方程进行化简\\ =\frac {8000} {x} * x(x+4) = 8000(x+4)\\ =\frac {17600} {x+4} * x(x+4) = 17600x\\ =将两个化简后的分式带回到方程中\\ =2 * 8000(x+4) = 17600x\\ =16000(x+4)=17600x\\ =16000x + 64000 = 17600x\\ =x=40 2∗x8000=x+417600=两个分式的分母分别是单项式x和多项式x+4,先判断x+4能否分解=x+4不能分解,那么就把x+4想象成单项式中的一个字母,然后套用单项式的规则找到最简公分母=两个分式中分母x和x+4的系数都是1,所以最小公倍数就是1=两个分式中分母的字母有:x、x+4,并且没有相同的字母,所以留下x和x+4=将最小公倍数和留下的字母进行拼接,得到最简公分母:1(x)(x+4)=x(x+4)=得到最简公分母后就可以对分式方程进行化简=x8000∗x(x+4)=8000(x+4)=x+417600∗x(x+4)=17600x=将两个化简后的分式带回到方程中=2∗8000(x+4)=17600x=16000(x+4)=17600x=16000x+64000=17600x=x=40
5. 负指数幂
公式: n − m = 1 m n n^{-m} = \frac {1} {m^n} n−m=mn1
例: 5 − 5 = 1 5 5 5^{-5} = \frac {1} {5^5} 5−5=551
6. 比例变形
公式: b a = d c 可变形为 c b = a d ,同理 c b = a d 也可变形为 b a = d c \frac {b} {a} = \frac {d} {c} 可变形为 cb=ad,同理 cb=ad 也可变形为\frac {b} {a} = \frac {d} {c} ab=cd可变形为cb=ad,同理cb=ad也可变形为ab=cd
例: x y = 3 2 , 2 x = 3 y \frac {x} {y} = \frac {3} {2},2x = 3y yx=23,2x=3y
公式: a ÷ b ÷ c = a b c a \div b \div c = \frac {a} {bc} a÷b÷c=bca
例: 6 ÷ 3 ÷ 2 = 6 2 ∗ 3 6 \div 3 \div 2 = \frac {6} {2 * 3} 6÷3÷2=2∗36
7. 分离常数法
用拆项使分式的分子为常数
例:
x + 2 x + 1 = x + 1 + 1 x + 1 = x + 1 x + 1 + 1 x + 1 = 1 + 1 x + 1 \frac {x + 2} {x + 1} = \frac {x +1 + 1}{x + 1}=\frac {x + 1}{ x + 1} + \frac {1} {x + 1} = 1 + \frac {1} {x + 1} x+1x+2=x+1x+1+1=x+1x+1+x+11=1+x+11
三、二次根式
0. 平方根和算数平方根的重要概念
一个数小于 0 0 0 时,它没有平方根,算式是错误的,不成立,没意义。
一个数等于 0 0 0 时,它只有一个平方根,就是 0 0 0
一个数大于 0 0 0 时,它有两个平方根,分别是 x \sqrt x x 和 − x -\sqrt x −x,其中 x \sqrt x x 叫做 x x x 的算数平方根
如果题中是求 a 的平方根,这个时候 a a a 是有两个平方根的,分别是 a \sqrt a a</