考研数二要掌握的高中知识点(三)


一、任意角

1. 任意角概念


初中学习了角的相关知识,角是由射线(即始边)围绕端点旋转而成,旋转后的边叫做终边。

初中阶段主要探讨的是 36 0 ∘ 360^{\circ} 360 内的角,高中阶段对角进行了进一步的学习,并且称其为任意角

1. 任意角

任意角分为:

  • 正角:终边逆时针旋转的角叫做正角,角度用正数表示
  • 零角:终边未旋转的角叫做零角
  • 负角:终边顺时针旋转的角叫做负角,角度用负数表示

2. 任意角在平面直角坐标系上的表示

在平面直角坐标系中,角默认的形态:以坐标系的原点为端点, 原点右侧的 x x x 轴为始边

3. 象限角

象限角是在平面直角坐标系中,根据终边所处的位置对角的叫法,当终边在第一象限内时,称为第一象限角。当终边在第二象限时,称为第二象限角。以此类推

如果终边正好与 x x x y y y 轴重合,那么这个角就不属于任何象限,即不是象限角

4. 终边和角

一个角只有一个终边,但是一个终边可以有无数的个角,比如 6 0 ∘ 60^{\circ} 60 42 0 ∘ 420^{\circ} 420 的终边就相同,但这是两个不同的角

5. 终边相同的角

以一个角的终边为起点,只要旋转 36 0 ∘ 360^{\circ} 360 的整数倍,那么终边就还会回到原来的位置,这时候形成的新角,就是终边相同的角,所以: α + 36 0 ∘ ∗ k , ( k ∈ Z ( k 是旋转的圈数,是全体整数) ) \alpha+360^{\circ} * k,(k \in Z (k 是旋转的圈数,是全体整数)) α+360k(kZk是旋转的圈数,是全体整数)),就全是终边相同的角

6. 已知 α \alpha α 的象限,求 α n \frac {\alpha}{n} nα 的象限

例,已知 α \alpha α 在第一象限,求 α 3 \frac {\alpha}{3} 3α 的象限

步骤1:先画一个平面直角坐标系,并把每个象限都 n n n 等分,题中是 α 3 \frac {\alpha}{3} 3α,所以就在每个象限 3 3 3 等分,这时平面直角坐标系会被分成 16 16 16

步骤2:从第一象限靠近 x x x 轴的那一份开始,逆时针标记序号,从 1 1 1 开始标记到 4 4 4,然后再重新从 1 1 1 开始,直到标记到第四象限靠近 x x x 轴的那一份。以题目为例,记号按逆时针排列为:

  • 第一象限:1、2、3
  • 第二象限:4、1、2
  • 第三象限:3、4、1
  • 第四象限:2、3、4

象限角

步骤3:已知的角是第几象限,就找到对应的序号,这个序号所在的象限就是 α 3 \frac {\alpha}{3} 3α 所处的象限,以题中为例, α \alpha α 在第一象限,所以要找到所有序号是 1 1 1 的象限,分别是:第一象限、第二象限、第三象限。所以 α 3 \frac {\alpha}{3} 3α 就处于第一象限、第二象限、第三象限。

2. 角度制与弧度制


1. 角度制与弧度制

在初中,角的单位是度(如: 36 0 ∘ 360^\circ 360),在高中,角有了新的单位,弧度制( r a d i a n radian radian),一般记做 r a d rad rad(如:360 rad),但通常习惯将弧度制的单位省略(如:360)

2. 角度制与弧度制下,周角和角的大小

圆和圆中角的概念:

  • 圆:射线旋转一周围城的图形
  • 半径( r r r):圆心到圆边的距离
  • 角( α \alpha α):半径旋转后,终边和始边的夹角
  • 弧长( l l l):半径旋转后,终边和始边在圆边移动的距离
  • 周角:射线旋转一周的角

角度制下周角和角的大小

周角:被人为定义成 36 0 ∘ 360^{\circ} 360

角的大小:周角和旋转比例的比值

例:在圆中,一个角旋转了 1 3 \frac {1} {3} 31,则这个角的大小就是 α = 36 0 ∘ 3 = 12 0 ∘ \alpha = \frac {360^{\circ}}{3}=120^{\circ} α=3360=120

弧度制下周角和角的大小

角的大小:弧长和半径的比值,即: α = l r \alpha = \frac {l}{r} α=rl

周角:仍然是弧长和半径的比值,只不过这个弧长是特殊的,是半径旋转一圈的弧长,也就是圆周长,即: α = 2 π r r = 2 π \alpha = \frac {2\pi r}{r}=2\pi α=r2πr=2π

3. 角度制与弧度制的换算

前面知道了,角度制下,周角是 36 0 ∘ 360^{\circ} 360,弧度制下,周角是 2 π 2 \pi 2π,所以角度和弧度的周角等式为: 36 0 ∘ = 2 π 360^{\circ} = 2 \pi 360=2π,从而也可以得出: π = 18 0 ∘ \pi = 180^{\circ} π=180,而角度制与弧度制的换算就是基于这个 π = 18 0 ∘ \pi = 180^{\circ} π=180

例 1,把弧度制 π 3 \frac {\pi}{3} 3π 11 6 π \frac {11}{6}\pi 611π 换成角度制:

解:

∵ π = 18 0 ∘ , ∴ π 3 = 18 0 ∘ 3 = 6 0 ∘ , 11 6 π = 11 6 ∗ 18 0 ∘ = 33 0 ∘ \because \pi=180^{\circ},\therefore \frac {\pi}{3}=\frac {180^{\circ}}{3}=60^{\circ},\frac {11}{6}\pi=\frac {11}{6}*180^{\circ}=330^{\circ} π=1803π=3180=60611π=611180=330

例 2,把角度制 30 0 ∘ 300^{\circ} 300 7 0 ∘ 70^{\circ} 70 换成弧度制:

∵ π = 18 0 ∘ , ∴ 30 0 ∘ = 30 0 ∘ ∗ π 18 0 ∘ = 5 3 π , 7 0 ∘ = 7 0 ∘ ∗ π 18 0 ∘ = 7 π 18 \because \pi=180^{\circ},\therefore 300^{\circ} = 300^{\circ} * \frac {\pi}{180^{\circ}}=\frac {5}{3}\pi,70^{\circ}=70^{\circ}*\frac {\pi}{180^{\circ}}=\frac {7\pi}{18} π=180300=300180π=35π70=70180π=187π

3. 弧长公式和扇形面积公式


求解弧长和面积时,必须得先已知两个信息, 半径( r r r)和角的大小( α \alpha α),知道这两个信息后,还得根据角度制和弧度制来使用不同的公式来计算弧长和面积

1. 弧长公式

  • 角度制:角度制中,周角和圆周长是等比例关系,即: 36 0 ∘ = 2 π r 360^{\circ} = 2\pi r 360=2πr, 当已知一个角的大小后,那么就可以算出这个角和周角的比例,而弧长和圆周长的比例,应与其相同,所以弧长公式为: 36 0 ∘ α ∘ = 2 π r l \frac {360^{\circ}}{\alpha^{\circ}}=\frac {2\pi r}{l} α360=l2πr

  • 弧度制:因为角大小的公式为: α = l r \alpha = \frac {l}{r} α=rl,所以弧长的公式就是: l = α ∗ r l = \alpha * r l=αr,需要注意的是如果 α \alpha α 给的是角度制的单位时,应先将其换算成弧度制单位


2. 面积公式

  • 角度制:角度制中,周角和圆的面积是等比例关系,即: 36 0 ∘ = π r 2 360^{\circ} = \pi r^2 360=πr2, 当已知一个角的大小后,那么就可以算出这个角和周角的比例,而扇形面积和圆面积的比例,应与其相同,所以面积公式为: 36 0 ∘ α ∘ = π r 2 S \frac {360^{\circ}}{\alpha^{\circ}}=\frac {\pi r^{2}}{S} α360=Sπr2

  • 弧度制:弧度制其实和角度制同理,弧度制中,周角和圆的面积是等比例关系,即: 2 π = π r 2 2\pi = \pi r^2 2π=πr2, 当已知一个角的大小后,那么就可以算出这个角和周角的比例,而扇形面积和圆面积的比例,应与其相同,所以面积公式为: 2 π α = π r 2 S \frac {2\pi}{\alpha}=\frac {\pi r^{2}}{S} α2π=Sπr2,化简后为: 1 2 ∗ α ∗ r 2 \frac 1 2 * \alpha * r^2 21αr2,因为 1 2 ∗ α ∗ r 2 = 1 2 ∗ α ∗ r ∗ r \frac 1 2 * \alpha * r^2 = \frac 1 2 * \alpha * r * r 21αr2=21αrr,所以也可以记为: 1 2 ∗ l ∗ r \frac 1 2 * l * r 21lr

例,一个扇形的半径是 2 2 2,角度是 12 0 ∘ 120^\circ 120,求弧长和面积?

角度制,解:

弧长, ∵ 36 0 ∘ α ∘ = 2 π r l , ∴ 36 0 ∘ 12 0 ∘ = 4 π l , ∴ 弧长: 4 3 π \because \frac {360^{\circ}}{\alpha^{\circ}}=\frac {2\pi r}{l},\therefore \frac {360^{\circ}}{120^{\circ}}=\frac {4\pi}{l}, \therefore 弧长:\frac 4 3 \pi α360=l2πr120360=l4π弧长:34π

面积, ∵ 36 0 ∘ α ∘ = π r 2 S , ∴ 36 0 ∘ 12 0 ∘ = 4 π S , ∴ 面积: 4 3 π \because \frac {360^{\circ}}{\alpha^{\circ}}=\frac {\pi r^2}{S},\therefore \frac {360^{\circ}}{120^{\circ}}=\frac {4\pi}{S}, \therefore 面积:\frac 4 3 \pi α360=Sπr2120360=S4π面积:34π

弧度制,解:

因为 12 0 ∘ 120^{\circ} 120 是角度制单位,需要先换算成弧度制,即: 12 0 ∘ ∗ π 18 0 ∘ = 2 π 3 120^{\circ} * \frac {\pi}{180^{\circ}}=\frac {2\pi}{3} 120180π=32π

弧长, ∵ l = α ∗ r , ∴ l = 2 π 3 ∗ 2 , ∴ 弧长: 4 3 π \because l = \alpha * r,\therefore l = \frac {2\pi}{3} * 2,\therefore 弧长:\frac 4 3 \pi l=αrl=32π2弧长:34π

面积, ∵ S = 1 2 ∗ α ∗ r 2 , ∴ S = 1 2 ∗ 2 π 3 ∗ 4 , ∴ 面积: 4 3 π \because S = \frac 1 2 * \alpha * r^2,\therefore S = \frac 1 2 *\frac {2\pi} {3} * 4,\therefore 面积:\frac 4 3 \pi S=21αr2S=2132π4面积:34π

二、三角函数

1. 三角函数的概念


在平面直角坐标系中,画一个角并在终边任取一点,然后做 x x x 轴的垂线,这时就会围成一个三角形。在这个三角形中:

任意角

  • 对边:垂线的那条边。它的高度与 y y y 坐标值相同,一般记为 y y y
  • 邻边: x x x 轴的那条边。它的长度与 x x x 坐标值相同,一般记为 x x x
  • 斜边:一般记为 r r r,按照勾股定理,它的长度是, r = x 2 + y 2 r=\sqrt {x^2 + y^2} r=x2+y2

高中阶段主要涉及的三角函数有:

  • 正弦(sine): sin ⁡ α = 对边 斜边 = y r \sin\alpha=\frac {对边}{斜边}=\frac {y}{r} sinα=斜边对边=ry,给定一个角,计算其对边和斜边的比值

  • 余弦(cosine): cos ⁡ α = 邻边 斜边 = x r \cos\alpha=\frac {邻边}{斜边}=\frac {x}{r} cosα=斜边邻边=rx,给定一个角,计算邻边和斜边的比值

  • 正切(tangent): tan ⁡ α = 对边 邻边 = y x \tan\alpha=\frac {对边}{邻边}=\frac {y}{x} tanα=邻边对边=xy,给定一个角,计算对边和邻边的比值

等腰直角三角形( 9 0 ∘ 90^{\circ} 90 4 5 ∘ 45^{\circ} 45 4 5 ∘ 45^{\circ} 45)和 直角三角形( 9 0 ∘ 90^{\circ} 90 3 0 ∘ 30^{\circ} 30 6 0 ∘ 60^{\circ} 60)必须背下来的三角函数值

因为等腰直角三角形( 9 0 ∘ 90^{\circ} 90 4 5 ∘ 45^{\circ} 45 4 5 ∘ 45^{\circ} 45)的两条直角边相等,所以设一条直角边是 a a a,则另一条直角边肯定也是 a a a,然后可以通过勾股定理算出第三条边是 a 2 + a 2 = 2 a \sqrt {a^2 + a ^2} = \sqrt 2 a a2+a2 =2 a,所以:

  • sin ⁡ 4 5 ∘ = a 2 a = 2 2 \sin 45^{\circ} = \frac {a} {\sqrt 2 a} = \frac {\sqrt 2} {2} sin45=2 aa=22

  • cos ⁡ 4 5 ∘ = a 2 a = 2 2 \cos 45^{\circ} = \frac {a} {\sqrt 2 a} = \frac {\sqrt 2} {2} cos45=2 aa=22

  • tan ⁡ 4 5 ∘ = a a = 1 \tan 45^{\circ} = \frac {a} {a} = 1 tan45=aa=1

因为直角三角形( 9 0 ∘ 90^{\circ} 90 3 0 ∘ 30^{\circ} 30 6 0 ∘ 60^{\circ} 60)中, 3 0 ∘ 30^{\circ} 30 的对边是斜边的一半,所以设 3 0 ∘ 30^{\circ} 30 的对边是 a a a,则斜边就是 2 a 2a 2a,然后可以通过勾股定理算出第三条边是 x 2 + a 2 = ( 2 a ) 2 x^2 + a^2 = (2a)^2 x2+a2=(2a)2,即 x = 3 a x =\sqrt {3}a x=3 a,所以:

  • sin ⁡ 3 0 ∘ = a 2 a = 1 2 \sin 30^{\circ} = \frac {a} {2a} = \frac {1} {2} sin30=2aa=21 cos ⁡ 6 0 ∘ = a 2 a = 1 2 \cos 60^{\circ} = \frac {a} {2a} = \frac {1} {2} cos60=2aa=21

  • cos ⁡ 3 0 ∘ = 3 a 2 a = 3 2 \cos 30^{\circ} = \frac {\sqrt {3} a} {2a} = \frac {\sqrt 3} {2} cos30=2a3 a=23 sin ⁡ 6 0 ∘ = 3 a 2 a = 3 2 \sin 60^{\circ} = \frac {\sqrt {3} a} {2a} = \frac {\sqrt 3} {2} sin60=2a3 a=23

  • tan ⁡ 3 0 ∘ = a 3 a = 3 3 \tan 30^{\circ} = \frac {a} {\sqrt {3} a} = \frac {\sqrt 3} {3} tan30=3 aa=33

  • tan ⁡ 6 0 ∘ = 3 a a = 3 \tan 60^{\circ} = \frac {\sqrt {3} a} {a} = \sqrt 3 tan60=a3 a=3

特殊角度要背下来的三角函数值

三角函数名 0 ∘ 0^{\circ} 0(弧度制: 0 0 0 9 0 ∘ 90^{\circ} 90(弧度制: π 2 \frac {\pi}{2} 2π 18 0 ∘ 180^{\circ} 180(弧度制: π \pi π 27 0 ∘ 270^{\circ} 270(弧度制: 3 π 2 \frac {3\pi}{2} 23π 36 0 ∘ 360^{\circ} 360(弧度制: 2 π 2\pi 2π
sin ⁡ \sin sin 0 0 0 1 1 1 0 0 0 − 1 -1 1 0 0 0
cos ⁡ \cos cos 1 1 1 0 0 0 − 1 -1 1 0 0 0 1 1 1
tan ⁡ \tan tan 0 0 0没意义,不成立 0 0 0没意义,不成立 0 0 0

2. 三角函数的的正负


先记住一点:斜边 r r r,永远是正数

1. sin ⁡ \sin sin 的正负

因为 sin ⁡ α = y r \sin \alpha=\frac {y}{r} sinα=ry,又因为斜边 r r r 永远是正数,所以 sin ⁡ \sin sin 的正负主要取决于 y y y,即: y y y 是正数时 sin ⁡ \sin sin 就是正的, y y y 是负数时 sin ⁡ \sin sin 就是负的。

从图像上来看,当角的终边在一、二象限时, sin ⁡ \sin sin 就是正的。终边在三、四象限时 sin ⁡ \sin sin 就是负的

2. cos ⁡ \cos cos 的正负

因为 cos ⁡ α = x r \cos \alpha=\frac {x}{r} cosα=rx,又因为斜边 r r r 永远是正数,所以 cos ⁡ \cos cos 的正负主要取决于 x x x,即: x x x 是正数时 cos ⁡ \cos cos 就是正的, x x x 是负数时 cos ⁡ \cos cos 就是负的。

从图像上来看,当角的终边在一、四象限时, cos ⁡ \cos cos 就是正的。终边在二、三象限时 cos ⁡ \cos cos 就是负的

3. tan ⁡ \tan tan 的正负

因为 tan ⁡ α = y x \tan \alpha=\frac {y}{x} tanα=xy,所以 y y y x x x 同号时 tan ⁡ \tan tan 就是正的, y y y x x x 异号时 tan ⁡ \tan tan 就是负的,

从图像上来看,当角的终边在一、三象限时, cos ⁡ \cos cos 就是正的。终边在二、四象限时 cos ⁡ \cos cos 就是负的

三角函数正负的图像口诀

一全正,二正弦,三正切,四余弦

一全正:终边在第一象限时, sin ⁡ \sin sin cos ⁡ \cos cos tan ⁡ \tan tan 都是正的

二正弦:终边在第二象限时, sin ⁡ \sin sin 是正的, cos ⁡ \cos cos tan ⁡ \tan tan 是负的

三正切:终边在第三象限时, tan ⁡ \tan tan 是正的, sin ⁡ \sin sin cos ⁡ \cos cos 是负的

四余弦:终边在第四象限时, cos ⁡ \cos cos 是正的, sin ⁡ \sin sin tan ⁡ \tan tan 是负的


3. 同角三角函数的关系式


在同一角内,只要知道 sin ⁡ 、 cos ⁡ 、 tan ⁡ \sin、\cos、\tan sincostan 中的任意一个,就可以通过下面两个公式计算出另外两个三角函数

1. sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1

公式原理推导:

∵ \because 在直角坐标系中,角的三边分别为:对边 y y y、邻边 x x x,斜边 r r r

∴ \therefore 通过勾股定理,可以得出斜边 r = y 2 + x 2 r=\sqrt {y^2 + x ^2} r=y2+x2

∵ \because sin ⁡ α = y r \sin \alpha = \frac {y} {r} sinα=ry cos ⁡ α = x r \cos \alpha = \frac {x} {r} cosα=rx

∴ \therefore sin ⁡ α = y y 2 + x 2 \sin \alpha = \frac {y} {\sqrt {y^2 + x ^2}} sinα=y2+x2 y cos ⁡ α = x y 2 + x 2 \cos \alpha = \frac {x} {\sqrt {y^2 + x ^2}} cosα=y2+x2 x

∴ sin ⁡ 2 α + cos ⁡ 2 α = ( y y 2 + x 2 ) 2 + ( x y 2 + x 2 ) 2 = y 2 y 2 + x 2 + x 2 y 2 + x 2 = y 2 + x 2 y 2 + x 2 = 1 \therefore \sin^2 \alpha + \cos^2 \alpha = (\frac {y} {\sqrt {y^2 + x ^2}})^2 + (\frac {x} {\sqrt {y^2 + x ^2}})^2 = \frac {y^2} {y^2 + x ^2} + \frac {x^2} {y^2 + x ^2} = \frac {y^2 + x ^2} {y^2 + x ^2} = 1 sin2α+cos2α=(y2+x2 y)2+(y2+x2 x)2=y2+x2y2+y2+x2x2=y2+x2y2+x2=1

2. tan ⁡ α = sin ⁡ α cos ⁡ α \tan \alpha = \frac {\sin \alpha}{\cos \alpha} tanα=cosαsinα

公式原理推导:

∵ \because sin ⁡ α = y r \sin \alpha = \frac {y} {r} sinα=ry cos ⁡ α = x r \cos \alpha = \frac {x} {r} cosα=rx

∴ sin ⁡ α cos ⁡ α = y r ∗ r x = y x \therefore \frac {\sin \alpha} {\cos \alpha} = \frac {y}{r} * \frac {r}{x} = \frac {y}{x} cosαsinα=ryxr=xy

∵ \because t a n = y x tan = \frac {y}{x} tan=xy ∴ tan ⁡ α = sin ⁡ α cos ⁡ α \therefore \tan \alpha=\frac {\sin \alpha}{\cos \alpha} tanα=cosαsinα

例:已知 sin ⁡ α + cos ⁡ α = 1 5 \sin \alpha + \cos \alpha = \frac {1}{5} sinα+cosα=51,求 sin ⁡ α ∗ cos ⁡ α \sin \alpha * \cos \alpha sinαcosα 的值

解:

已知 sin ⁡ α + cos ⁡ α = 1 5 \sin \alpha + \cos \alpha = \frac {1}{5} sinα+cosα=51,又已知 sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1,这时就得到了一个关于 sin ⁡ α 和 cos ⁡ α \sin \alpha 和 \cos \alpha sinαcosα 的方程组,只要将方程组解开,分别求出 sin ⁡ α 和 cos ⁡ α \sin \alpha 和 \cos \alpha sinαcosα,再将其代入到 sin ⁡ α ∗ cos ⁡ α \sin \alpha * \cos \alpha sinαcosα 中就可以

方程组: { sin ⁡ α + cos ⁡ α = 1 5 sin ⁡ 2 α + cos ⁡ 2 α = 1 \begin{cases} \sin \alpha + \cos \alpha = \frac {1}{5}\\ \sin^2 \alpha + \cos^2 \alpha = 1 \end{cases} {sinα+cosα=51sin2α+cos2α=1

∵ sin ⁡ α + cos ⁡ α = 1 5 \because \sin \alpha + \cos \alpha = \frac {1}{5} sinα+cosα=51

∴ cos ⁡ α = 1 5 − sin ⁡ α \therefore \cos \alpha = \frac {1}{5} - \sin \alpha cosα=51sinα并将其代入到 sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1,代入后为: sin ⁡ 2 α + ( 1 5 − sin ⁡ α ) 2 = 1 \sin^2 \alpha + (\frac {1}{5} - \sin \alpha)^2 = 1 sin2α+(51sinα)2=1

解得: sin ⁡ α = 4 5 \sin \alpha=\frac {4}{5} sinα=54 sin ⁡ α = − 3 5 \sin \alpha =-\frac {3}{5} sinα=53,然后分别代入到 sin ⁡ α + cos ⁡ α = 1 5 \sin \alpha + \cos \alpha = \frac {1}{5} sinα+cosα=51

解得: sin ⁡ α = 4 5 \sin \alpha =\frac {4}{5} sinα=54 cos ⁡ α = − 3 5 \cos \alpha = - \frac {3}{5} cosα=53 sin ⁡ α = − 3 5 \sin \alpha= - \frac {3}{5} sinα=53 cos ⁡ α = 4 5 \cos \alpha = \frac {4}{5} cosα=54

sin ⁡ α ∗ cos ⁡ α = − 3 5 ∗ 4 5 = − 12 25 \sin \alpha * \cos \alpha= - \frac {3}{5} * \frac {4}{5} = - \frac {12}{25} sinαcosα=5354=2512

上题中,虽然使用方程组可以求解,但计算过程却很耗时。其实已知 sin ⁡ α + cos ⁡ α \sin \alpha + \cos \alpha sinα+cosα sin ⁡ α − cos ⁡ α \sin \alpha - \cos \alpha sinαcosα sin ⁡ α ∗ cos ⁡ α \sin \alpha * \cos \alpha sinαcosα 中的任意一个,就可以利用完全平方公式求出另外两个的值

现在利用完全平方公式,对刚才的题重新求解,已知 sin ⁡ α + cos ⁡ α = 1 5 \sin \alpha + \cos \alpha = \frac {1}{5} sinα+cosα=51,求 sin ⁡ α ∗ cos ⁡ α \sin \alpha * \cos \alpha sinαcosα 的值:

解:

让等号两边同时乘方,凑成完全平方公式: ( sin ⁡ α + cos ⁡ α ) 2 = 1 25 (\sin \alpha + \cos \alpha)^2 = \frac {1}{25} (sinα+cosα)2=251

将完全平方公式展开: sin ⁡ 2 α + cos ⁡ 2 α + 2 ∗ sin ⁡ α ∗ cos ⁡ α = 1 25 \sin^2 \alpha + \cos^2 \alpha + 2 * \sin \alpha * \cos \alpha = \frac {1}{25} sin2α+cos2α+2sinαcosα=251

∵ sin ⁡ 2 α + cos ⁡ 2 α = 1 \because \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1

∴ 1 + 2 ∗ sin ⁡ α ∗ cos ⁡ α = 1 25 \therefore1 + 2 * \sin \alpha * \cos \alpha = \frac {1}{25} 1+2sinαcosα=251

∴ 2 ∗ sin ⁡ α ∗ cos ⁡ α = 1 25 − 1 \therefore 2 * \sin \alpha * \cos \alpha = \frac {1}{25} - 1 2sinαcosα=2511

∴ sin ⁡ α ∗ cos ⁡ α = − 12 25 \therefore \sin \alpha * \cos \alpha = - \frac {12}{25} sinαcosα=2512

趁热打铁,再来一道题, sin ⁡ α + cos ⁡ α = 5 2 \sin \alpha + \cos \alpha = \frac {\sqrt 5}{2} sinα+cosα=25 ,则 sin ⁡ α − cos ⁡ α = \sin \alpha - \cos \alpha = sinαcosα= ?

这道题用方程组的方式仍然可以求解,但是这里还是使用更简单的完全平方公式的方式

解:

让等号两边同时乘方,凑成完全平方公式: ( sin ⁡ α + cos ⁡ α ) 2 = 5 4 (\sin \alpha + \cos \alpha)^2 = \frac {5}{4} (sinα+cosα)2=45

将完全平方公式展开: sin ⁡ 2 α + cos ⁡ 2 α + 2 ∗ sin ⁡ α ∗ cos ⁡ α = 5 4 \sin^2 \alpha + \cos^2 \alpha + 2 * \sin \alpha * \cos \alpha = \frac {5}{4} sin2α+cos2α+2sinαcosα=45

∵ sin ⁡ 2 α + cos ⁡ 2 α = 1 \because \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1

∴ 1 + 2 ∗ sin ⁡ α ∗ cos ⁡ α = 5 4 \therefore1 + 2 * \sin \alpha * \cos \alpha = \frac {5}{4} 1+2sinαcosα=45

∴ 2 ∗ sin ⁡ α ∗ cos ⁡ α = 1 4 \therefore 2 * \sin \alpha * \cos \alpha = \frac {1}{4} 2sinαcosα=41

这个方程暂时解到这里就可以了,现在把 sin ⁡ α − cos ⁡ α \sin \alpha - \cos \alpha sinαcosα 也变成完全平方公式的样子:

( sin ⁡ α − cos ⁡ α ) 2 = sin ⁡ 2 α + cos ⁡ 2 α − 2 ∗ sin ⁡ α ∗ cos ⁡ α (\sin \alpha - \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha - 2 * \sin \alpha * \cos \alpha (sinαcosα)2=sin2α+cos2α2sinαcosα

∵ sin ⁡ 2 α + cos ⁡ 2 α = 1 \because \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1,又 ∵ 2 ∗ sin ⁡ α ∗ cos ⁡ α = 1 4 \because 2 * \sin \alpha * \cos \alpha = \frac {1}{4} 2sinαcosα=41

∴ ( sin ⁡ α − cos ⁡ α ) 2 = 1 − 1 4 \therefore (\sin \alpha - \cos \alpha)^2 = 1 - \frac {1}{4} (sinαcosα)2=141

∴ ( sin ⁡ α − cos ⁡ α ) 2 = 3 4 \therefore (\sin \alpha - \cos \alpha)^2 = \frac {3}{4} (sinαcosα)2=43

∴ sin ⁡ α − cos ⁡ α = 3 2 \therefore \sin \alpha - \cos \alpha = \frac {\sqrt 3}{2} sinαcosα=23


4. 诱导公式


1. 诱导公式的概念

3 0 ∘ 30^{\circ} 30 4 5 ∘ 45^{\circ} 45 6 0 ∘ 60^{\circ} 60 9 0 ∘ 90^{\circ} 90 18 0 ∘ 180^{\circ} 180 36 0 ∘ 360^{\circ} 360 的角具有特殊性,它们对应的三角函数值前面已经背过,所以当角度是这些时,就可以很快的知道三角函数 sin ⁡ \sin sin cos ⁡ \cos cos tan ⁡ \tan tan 的值。

诱导公式:将一个大的角变成小角(最好能变成上述那些小角),从而能快速得到三角函数值。

例:计算 sin ⁡ 39 0 ∘ \sin 390^{\circ} sin390 的函数值?

这个时候很难直接计算,可以先将其拆解为: sin ⁡ ( 36 0 ∘ + 3 0 ∘ ) \sin (360^{\circ} + 30^{\circ}) sin(360+30),又因为终边相同的角的同一三角函数的值相等的特点,所以 36 0 ∘ 360^{\circ} 360 的整数倍都可以忽略,所以只需要计算 sin ⁡ 3 0 ∘ \sin 30^{\circ} sin30 就可以,即: sin ⁡ 39 0 ∘ = sin ⁡ ( 36 0 ∘ + 3 0 ∘ ) = sin ⁡ 3 0 ∘ = 1 2 \sin 390^{\circ} = \sin (360^{\circ} + 30^{\circ}) = \sin 30^{\circ}=\frac {1}{2} sin390=sin(360+30)=sin30=21

前面例子, sin ⁡ ( 36 0 ∘ + 3 0 ∘ ) = sin ⁡ 3 0 ∘ \sin (360^{\circ} + 30^{\circ}) = \sin 30^{\circ} sin(360+30)=sin30,其实就无形中使用了 sin ⁡ ( k ∗ 2 π + α ) = sin ⁡ α \sin (k * 2\pi + \alpha)=\sin \alpha sin(k2π+α)=sinα 这个诱导公式。但并不是所有大角化小角的问题都可以使用这个公式。根据将原角拆分的粒度不同,有很多对应的诱导公式,刚刚这个只合适将角拆分成 36 0 ∘ 360^{\circ} 360 的整数倍时使用。

2. 常见的诱导公式结构,要背下来

为了方便理解,建议将诱导公式中的 α \alpha α 全部当做锐角

(1) 关于 − α -\alpha α 的诱导公式:

sin ⁡ ( − α ) = − sin ⁡ α \sin (-\alpha)=-\sin \alpha sin(α)=sinα

cos ⁡ ( − α ) = cos ⁡ α \cos (-\alpha)=\cos \alpha cos(α)=cosα

tan ⁡ ( − α ) = − tan ⁡ α \tan (-\alpha)=-\tan \alpha tan(α)=tanα

证明:假设 α \alpha α 为锐角,可在其终边取点坐标 P ( x , y ) P(x,y) P(x,y),而 − α -\alpha α α \alpha α 的终边关于 x x x 轴对称,所以 − α -\alpha α 对应的点坐标为 P ( x , − y ) P(x,-y) P(x,y)

即: sin ⁡ ( − α ) = − y r \sin (-\alpha)=\frac {-y}{r} sin(α)=ry sin ⁡ ( α ) = y r \sin (\alpha)=\frac {y}{r} sin(α)=ry,所以 sin ⁡ ( − α ) = − sin ⁡ α \sin (-\alpha)=-\sin \alpha sin(α)=sinα

即: cos ⁡ ( − α ) = x r \cos (-\alpha)=\frac {x}{r} cos(α)=rx cos ⁡ ( α ) = x r \cos (\alpha)=\frac {x}{r} cos(α)=rx,所以 cos ⁡ ( − α ) = cos ⁡ α \cos (-\alpha)=\cos \alpha cos(α)=cosα

即: tan ⁡ ( − α ) = − y x \tan (-\alpha)=\frac {-y}{x} tan(α)=xy tan ⁡ ( α ) = y x \tan (\alpha)=\frac {y}{x} tan(α)=xy,所以 tan ⁡ ( − α ) = − tan ⁡ α \tan (-\alpha)=-\tan \alpha tan(α)=tanα

(2) 关于 π 2 + α \frac {\pi}{2}+\alpha 2π+α 的诱导公式:

sin ⁡ ( π 2 + α ) = cos ⁡ α \sin (\frac {\pi}{2} + \alpha)=\cos \alpha sin(2π+α)=cosα

cos ⁡ ( π 2 + α ) = − sin ⁡ α \cos (\frac {\pi}{2} + \alpha)=-\sin \alpha cos(2π+α)=sinα

tan ⁡ ( π 2 + α ) = − 1 tan ⁡ α \tan (\frac {\pi}{2} + \alpha)=-\frac {1}{\tan \alpha} tan(2π+α)=tanα1

证明:假设 α \alpha α 为锐角,可在其终边取点坐标 P ( x , y ) P(x,y) P(x,y),然后在 π 2 + α \frac {\pi}{2}+\alpha 2π+α 的终边取点坐标 P ( − y , x ) P(-y,x) P(y,x),这时从两个终边的点坐标分别向 x x x 轴做垂线,围成的两个三角形是全等关系

即: sin ⁡ ( π 2 + α ) = x r \sin (\frac {\pi}{2} + \alpha)=\frac {x}{r} sin(2π+α)=rx cos ⁡ ( α ) = x r \cos (\alpha)=\frac {x}{r} cos(α)=rx,所以 sin ⁡ ( π 2 + α ) = cos ⁡ α \sin (\frac {\pi}{2} + \alpha)=\cos \alpha sin(2π+α)=cosα

即: cos ⁡ ( π 2 + α ) = − y r \cos (\frac {\pi}{2} + \alpha)=\frac {-y}{r} cos(2π+α)=ry sin ⁡ ( α ) = y r \sin (\alpha)=\frac {y}{r} sin(α)=ry,所以 cos ⁡ ( π 2 + α ) = − sin ⁡ α \cos (\frac {\pi}{2} + \alpha)=-\sin \alpha cos(2π+α)=sinα

即: tan ⁡ ( π 2 + α ) = x − y \tan (\frac {\pi}{2} + \alpha)=\frac {x}{-y} tan(2π+α)=yx cos ⁡ ( α ) = y x \cos (\alpha)=\frac {y}{x} cos(α)=xy,所以 tan ⁡ ( π 2 + α ) = − 1 tan ⁡ α \tan (\frac {\pi}{2} + \alpha)=-\frac {1}{\tan \alpha} tan(2π+α)=tanα1

(3) 关于 π 2 − α \frac {\pi}{2}-\alpha 2πα 的诱导公式:

sin ⁡ ( π 2 − α ) = cos ⁡ α \sin (\frac {\pi}{2} - \alpha)=\cos \alpha sin(2πα)=cosα

cos ⁡ ( π 2 − α ) = sin ⁡ α \cos (\frac {\pi}{2} - \alpha)=\sin \alpha cos(2πα)=sinα

tan ⁡ ( π 2 − α ) = 1 tan ⁡ α \tan (\frac {\pi}{2} - \alpha)=\frac {1}{\tan \alpha} tan(2πα)=tanα1

证明:假设 α \alpha α 为锐角,可在其终边取点坐标 P ( x , y ) P(x,y) P(x,y),然后在 π 2 − α \frac {\pi}{2}-\alpha 2πα 的终边取点坐标 P ( y , x ) P(y,x) P(y,x),这时从两个终边的点坐标分别向 x x x 轴做垂线,围成的两个三角形是全等关系

即: sin ⁡ ( π 2 − α ) = x r \sin (\frac {\pi}{2} - \alpha)=\frac {x}{r} sin(2πα)=rx cos ⁡ ( α ) = x r \cos (\alpha)=\frac {x}{r} cos(α)=rx,所以 sin ⁡ ( π 2 − α ) = cos ⁡ α \sin (\frac {\pi}{2} - \alpha)=\cos \alpha sin(2πα)=cosα

即: cos ⁡ ( π 2 − α ) = y r \cos (\frac {\pi}{2} - \alpha)=\frac {y}{r} cos(2πα)=ry sin ⁡ ( α ) = y r \sin (\alpha)=\frac {y}{r} sin(α)=ry,所以 cos ⁡ ( π 2 − α ) = sin ⁡ α \cos (\frac {\pi}{2} - \alpha)=\sin \alpha cos(2πα)=sinα

即: tan ⁡ ( π 2 + α ) = x y \tan (\frac {\pi}{2} + \alpha)=\frac {x}{y} tan(2π+α)=yx cos ⁡ ( α ) = y x \cos (\alpha)=\frac {y}{x} cos(α)=xy,所以 tan ⁡ ( π 2 − α ) = 1 tan ⁡ α \tan (\frac {\pi}{2} - \alpha)=\frac {1}{\tan \alpha} tan(2πα)=tanα1

(4) 关于 π + α \pi + \alpha π+α 的诱导公式:

sin ⁡ ( π + α ) = − sin ⁡ α \sin (\pi + \alpha)=-\sin \alpha sin(π+α)=sinα

cos ⁡ ( π + α ) = − cos ⁡ α \cos (\pi + \alpha)=-\cos \alpha cos(π+α)=cosα

tan ⁡ ( π + α ) = tan ⁡ α \tan (\pi + \alpha)=\tan \alpha tan(π+α)=tanα

证明:假设 α \alpha α 为锐角,可在其终边取点坐标 P ( x , y ) P(x,y) P(x,y),而 π + α \pi + \alpha π+α α \alpha α 的终边关于原点对称,所以 − α -\alpha α 对应的点坐标为 P ( − x , − y ) P(-x,-y) P(x,y)

即: sin ⁡ ( π + α ) = − y r \sin (\pi+\alpha)=\frac {-y}{r} sin(π+α)=ry sin ⁡ ( α ) = y r \sin (\alpha)=\frac {y}{r} sin(α)=ry,所以 sin ⁡ ( π + α ) = − sin ⁡ α \sin (\pi + \alpha)=-\sin \alpha sin(π+α)=sinα

即: cos ⁡ ( π + α ) = − x r \cos (\pi+\alpha)=\frac {-x}{r} cos(π+α)=rx sin ⁡ ( α ) = x r \sin (\alpha)=\frac {x}{r} sin(α)=rx,所以 cos ⁡ ( π + α ) = − cos ⁡ α \cos (\pi + \alpha)=-\cos \alpha cos(π+α)=cosα

即: tan ⁡ ( π + α ) = − y − x \tan (\pi+\alpha)=\frac {-y}{-x} tan(π+α)=xy sin ⁡ ( α ) = y x \sin (\alpha)=\frac {y}{x} sin(α)=xy,所以 tan ⁡ ( π + α ) = tan ⁡ α \tan (\pi + \alpha)=\tan \alpha tan(π+α)=tanα

(5) 关于 π − α \pi - \alpha πα 的诱导公式:

sin ⁡ ( π − α ) = sin ⁡ α \sin (\pi -\alpha)=\sin \alpha sin(πα)=sinα

cos ⁡ ( π − α ) = − cos ⁡ α \cos (\pi -\alpha)=-\cos \alpha cos(πα)=cosα

tan ⁡ ( π − α ) = − tan ⁡ α \tan (\pi -\alpha)=-\tan\alpha tan(πα)=tanα

证明:假设 α \alpha α 为锐角,可在其终边取点坐标 P ( x , y ) P(x,y) P(x,y),而 π − α \pi -\alpha πα α \alpha α 的终边关于 y y y 轴对称,所以 − α -\alpha α 对应的点坐标为 P ( − x , y ) P(-x,y) P(x,y)

即: sin ⁡ ( π − α ) = y r \sin (\pi-\alpha)=\frac {y}{r} sin(πα)=ry sin ⁡ ( α ) = y r \sin (\alpha)=\frac {y}{r} sin(α)=ry,所以 sin ⁡ ( π − α ) = sin ⁡ α \sin (\pi -\alpha)=\sin \alpha sin(πα)=sinα

即: cos ⁡ ( π − α ) = − x r \cos (\pi-\alpha)=\frac {-x}{r} cos(πα)=rx cos ⁡ ( α ) = x r \cos (\alpha)=\frac {x}{r} cos(α)=rx,所以 cos ⁡ ( π − α ) = − cos ⁡ α \cos (\pi -\alpha)=-\cos \alpha cos(πα)=cosα

即: tan ⁡ ( π − α ) = y − x \tan (\pi-\alpha)=\frac {y}{-x} tan(πα)=xy tan ⁡ ( α ) = y x \tan (\alpha)=\frac {y}{x} tan(α)=xy,所以 tan ⁡ ( π − α ) = − tan ⁡ α \tan (\pi -\alpha)=-\tan\alpha tan(πα)=tanα

(6) 关于 2 π + α 2\pi + \alpha 2π+α 的诱导公式:

sin ⁡ ( k ∗ 2 π + α ) = sin ⁡ α \sin (k*2\pi + \alpha)=\sin \alpha sin(k2π+α)=sinα

cos ⁡ ( k ∗ 2 π + α ) = cos ⁡ α \cos (k*2\pi + \alpha)=\cos \alpha cos(k2π+α)=cosα

tan ⁡ ( k ∗ 2 π + α ) = tan ⁡ α \tan (k*2\pi + \alpha)=\tan \alpha tan(k2π+α)=tanα

证明:因为 2 π = 36 0 ∘ 2\pi=360^{\circ} 2π=360,而 α \alpha α 的所有 36 0 ∘ 360^{\circ} 360 的整数倍都与其终边相等

即: sin ⁡ ( k ∗ 2 π + α ) = sin ⁡ α \sin (k*2\pi + \alpha)=\sin \alpha sin(k2π+α)=sinα

即: cos ⁡ ( k ∗ 2 π + α ) = cos ⁡ α \cos (k*2\pi + \alpha)=\cos \alpha cos(k2π+α)=cosα

即: tan ⁡ ( k ∗ 2 π + α ) = tan ⁡ α \tan (k*2\pi + \alpha)=\tan \alpha tan(k2π+α)=tanα

3. 通过规律记忆诱导公式

诱导公式的规律:

  • 将原式的角变为 k ∗ π 2 + α k * \frac {\pi} {2} + \alpha k2π+α 的结构, α \alpha α 就是我们要留下的小角

  • 奇变偶不变

  • 符号看象限


现在就以 sin ⁡ 10 0 ∘ \sin 100^{\circ} sin100 当做例子,演示当忘记诱导公式时,如何通过规律来完成同样的效果

(1) 将原式的角变为 k ∗ π 2 + α k * \frac {\pi} {2} + \alpha k2π+α 的结构, α \alpha α 就是我们要留下的小角

sin ⁡ 10 0 ∘ \sin 100^{\circ} sin100,可以拆解成 9 0 ∘ + 1 0 ∘ 90^{\circ} + 10^{\circ} 90+10,换算成弧度制为: 1 ∗ π 2 + π 18 1 * \frac {\pi}{2} + \frac {\pi}{18} 12π+18π,刚好可以满足所需的结构,然后留下小角 α \alpha α, 即在这一步得到了: sin ⁡ π 18 \sin \frac {\pi}{18} sin18π

(2) 奇变偶不变

k ∗ π 2 + α k * \frac {\pi} {2} + \alpha k2π+α 这个结构中,当 k k k 是奇数时三角函数名需要变,是偶数时三角函数名不用变,即:

  • 奇数时: sin ⁡ α → cos ⁡ α \sin \alpha→\cos \alpha sinαcosα cos ⁡ α → sin ⁡ α \cos \alpha→\sin \alpha cosαsinα tan ⁡ α → 1 tan ⁡ α \tan \alpha→\frac {1} {\tan \alpha} tanαtanα1

  • 偶数时: sin ⁡ α \sin \alpha sinα cos ⁡ α \cos \alpha cosα tan ⁡ α \tan \alpha tanα 保持不变

上一步将 sin ⁡ 10 0 ∘ \sin 100^{\circ} sin100 拆解成 k ∗ π 2 + α k * \frac {\pi} {2} + \alpha k2π+α 的结构,即: 1 ∗ π 2 + π 18 1 * \frac {\pi}{2} + \frac {\pi}{18} 12π+18π k k k 是奇数 1 1 1,所以要把函数名变成 cos ⁡ \cos cos,上一步最后的结果是 sin ⁡ π 18 \sin \frac {\pi}{18} sin18π,所以这一步变换函数名后为: cos ⁡ π 18 \cos \frac {\pi}{18} cos18π

(3) 符号看象限

指最终结果的符号,根据原三角函数的所在象限判断正负,原三角函数的值是正,结果就是正、原三角函数的值是负,结果就是负。其实判断象限只要利用三角函数正负的图像口诀就可以(一全正,二正弦,三正切,四余弦)

因为是根据原式判断,原式是 sin ⁡ 10 0 ∘ \sin 100^{\circ} sin100,属于第二象限,而 sin ⁡ \sin sin 在第二象限是正的,所以结果就是正的,即在这一步得到了最终结果: cos ⁡ π 18 \cos \frac {\pi}{18} cos18π,转换成角度制就是: cos ⁡ 1 0 ∘ \cos 10^{\circ} cos10

假设原式属于第三象限,则 sin ⁡ \sin sin 在第三象限是负的,结果就是 − cos ⁡ π 18 -\cos \frac {\pi}{18} cos18π

4. 碰见大角问题时的做题步骤

分三步:

  1. 负化正:当题中的角是负数时,要先通过 − α -\alpha α 的诱导公式,将其变为关于 α \alpha α 的三角函数
  2. 大化小:尝试从大角中拆分出 36 0 ∘ 360^{\circ} 360 的整数倍,因为角的 36 0 ∘ 360^{\circ} 360 的整数倍的终边相同,所以可以直接舍弃
  3. 小化锐:尝试从上一步的角中再拆分出 18 0 ∘ 180^{\circ} 180 9 0 ∘ 90^{\circ} 90,以便满足诱导公式中常见的 π ± α \pi \pm \alpha π±α π 2 ± α \frac {\pi}{2} \pm \alpha 2π±α

例:求 sin ⁡ ( − 132 0 ∘ ) \sin (-1320^{\circ}) sin(1320)

解:

第一步,负化正:因为角是负的,所以要先通过 − α -\alpha α 的诱导公式, sin ⁡ ( − α ) = − sin ⁡ α \sin (-\alpha) = -\sin \alpha sin(α)=sinα,将其变为关于 α \alpha α 的三角函数,即: − sin ⁡ 132 0 ∘ -\sin 1320^{\circ} sin1320

第二步,大化小:因为 132 0 ∘ 1320^{\circ} 1320 中包含 3 3 3 36 0 ∘ 360^{\circ} 360,所以可以将其缩小为: 132 0 ∘ − 36 0 ∘ ∗ 3 = 24 0 ∘ 1320^{\circ}-360^{\circ} * 3 = 240^{\circ} 13203603=240

第三步,小化锐:上一步 24 0 ∘ 240^{\circ} 240 又可以拆成 18 0 ∘ + 6 0 ∘ 180^{\circ} + 60^{\circ} 180+60,此时 α = 6 0 ∘ \alpha = 60^{\circ} α=60 已经变成锐角了,所以不用再拆分了。然后观察 18 0 ∘ + 6 0 ∘ 180^{\circ} + 60^{\circ} 180+60 ,可以发现其满足 sin ⁡ ( π + α ) \sin(\pi + \alpha) sin(π+α) 的结构,所以这里使用诱导公式 sin ⁡ ( π + α ) = − sin ⁡ α \sin (\pi + \alpha)=-\sin \alpha sin(π+α)=sinα,即最终结果为: − sin ⁡ 6 0 ∘ = − 3 2 -\sin 60^{\circ}=-\frac {\sqrt 3}{2} sin60=23

三、正余弦的图像性质


1. 正余弦函数的定义域、值域和五点法画图


1. 五点法画图

只要会画正余弦函数图像,正余弦的图像性质就不需要背诵,每次都可以通过画图去理解。

通过五点法画出的正弦函数图像如下:

正弦函数图像

通过五点法画出的余弦函数图像如下:

余弦函数图像

五点法:画正余弦函数图像时,分别对三角函数的参数取五个点即可。需要注意:三角函数的参数必须是弧度制

五个点分别是: 0 0 0 π 2 \frac {\pi}{2} 2π π \pi π 3 π 2 \frac {3\pi}{2} 23π 2 π 2\pi 2π,因为这五个点的正余弦值是固定的,如下:

三角函数名 0 0 0 π 2 \frac {\pi}{2} 2π π \pi π 3 π 2 \frac {3\pi}{2} 23π 2 π 2\pi 2π
sin ⁡ \sin sin 0 0 0 1 1 1 0 0 0 − 1 -1 1 0 0 0
cos ⁡ \cos cos 1 1 1 0 0 0 − 1 -1 1 0 0 0 1 1 1

取点时要注意,并不只是让定义域 x x x 满足这五个点,而是整个三角函数的参数

例:画出 f ( x ) = 1 2 sin ⁡ ( x − π 6 ) f(x) = \frac {1}{2}\sin (x - \frac {\pi}{6}) f(x)=21sin(x6π) 的大致图像

解:

因为 sin ⁡ 的参数是 ( x − π 6 ) \sin 的参数是 (x - \frac {\pi}{6}) sin的参数是(x6π),所以要让 ( x − π 6 ) (x - \frac {\pi}{6}) (x6π) 分别满足五个点:

第一点 sin ⁡ 0 \sin 0 sin0:自变量为 x − π 6 = 0 x - \frac {\pi}{6} = 0 x6π=0 的解,即: x = π 6 x = \frac {\pi}{6} x=6π,值为: 1 2 ∗ sin ⁡ 0 = 0 \frac {1}{2} * \sin 0 = 0 21sin0=0

第二点 sin ⁡ π 2 \sin \frac {\pi}{2} sin2π:自变量为 x − π 6 = π 2 x - \frac {\pi}{6} = \frac {\pi}{2} x6π=2π 的解,即: x = 2 π 3 x = \frac {2\pi}{3} x=32π,值为: 1 2 ∗ sin ⁡ π 2 = 1 2 \frac {1}{2} * \sin \frac {\pi}{2} = \frac {1}{2} 21sin2π=21

第三点 sin ⁡ π \sin \pi sinπ:自变量为 x − π 6 = π x - \frac {\pi}{6} = \pi x6π=π的解,即: x = 7 π 6 x = \frac {7\pi}{6} x=67π,值为: 1 2 ∗ sin ⁡ π = 0 \frac {1}{2} * \sin\pi = 0 21sinπ=0

第四点 sin ⁡ 3 π 2 \sin \frac {3\pi}{2} sin23π:自变量为 x − π 6 = 3 π 2 x - \frac {\pi}{6} = \frac {3\pi}{2} x6π=23π 的解,即: x = 5 π 3 x = \frac {5\pi}{3} x=35π,值为: 1 2 ∗ sin ⁡ 3 π 2 = − 1 2 \frac {1}{2} * \sin \frac{3\pi}{2} = -\frac {1}{2} 21sin23π=21

第五点 sin ⁡ 2 π \sin 2\pi sin2π:自变量为 x − π 6 = 2 π x - \frac {\pi}{6} = 2\pi x6π=2π 的解,即: x = 13 π 6 x = \frac {13\pi}{6} x=613π,值为: 1 2 ∗ sin ⁡ 2 π = 0 \frac {1}{2} * \sin 2\pi = 0 21sin2π=0

至此,已经知道了五个点对应的自变量和值了,所以就可以画出函数图像了

2. 定义域和值域

正弦函数在标准情况下,即: f ( x ) = sin ⁡ x f(x) = \sin x f(x)=sinx 时,定义域: R R R,值域: [ − 1 , 1 ] [-1, 1] [1,1]

正弦函数在复杂情况下,即: f ( x ) = A sin ⁡ ( ω x + φ ) f(x) = A\sin (\omega x + \varphi) f(x)=Asin(ωx+φ) 时,值域: [ − A , A ] [-A, A] [A,A]

余弦函数在标准情况下,即: f ( x ) = cos ⁡ x f(x) = \cos x f(x)=cosx 时,定义域: R R R,值域: [ − 1 , 1 ] [-1, 1] [1,1]

余弦函数在复杂情况下,即: f ( x ) = A cos ⁡ ( ω x + φ ) f(x) = A\cos (\omega x + \varphi) f(x)=Acos(ωx+φ) 时,值域: [ − 1 , 1 ] [-1, 1] [1,1]

2. 正余弦函数的周期性


通过正余弦的标准函数图像可以看出,它们的最小正周期都是: 2 π 2\pi 2π

当复杂函数解析式时,周期计算也很简单,正余弦公式相同: T = 2 π ω T=\frac {2\pi}{\omega} T=ω2π,其中 ω \omega ω 指定义域的系数

例:

f ( x ) = sin ⁡ 3 x f(x)=\sin 3x f(x)=sin3x 的周期为: 2 π 3 \frac {2\pi}{3} 32π

f ( x ) = sin ⁡ ( 4 x − π 6 ) f(x) = \sin (4x - \frac {\pi}{6}) f(x)=sin(4x6π) 的周期为: 2 π 4 = π 2 \frac {2\pi}{4}=\frac {\pi}{2} 42π=2π

3. 正余弦函数的奇偶性


1. 标准情况

正弦函数:通过标准的正弦图像可以看出,其基于原点对称,所以标准的正弦函数为奇函数

余弦函数:通过标准的余弦图像可以看出,其基于 y y y 轴对称,所以标准的余弦函数为偶函数

2. 解析式为复杂情况时

当解析式比较复杂时,可以利用奇变偶不变的理论来分析它们的奇偶性:

正弦 A sin ⁡ ( ω x + φ ) A\sin(\omega x + \varphi) Asin(ωx+φ)

  • φ \varphi φ π 2 \frac {\pi}{2} 2π 的偶数倍时,正弦函数是奇函数
  • φ \varphi φ π 2 \frac {\pi}{2} 2π 的奇数倍时,正弦函数是偶函数(因为奇变,所以要变成 cos ⁡ \cos cos,从而成为偶函数)

余弦 A cos ⁡ ( ω x + φ ) A\cos(\omega x + \varphi) Acos(ωx+φ)

  • φ \varphi φ π 2 \frac {\pi}{2} 2π 的偶数倍时,余弦函数是偶函数
  • φ \varphi φ π 2 \frac {\pi}{2} 2π 的奇数倍时,余弦函数是奇函数(因为奇变,所以要变成 sin ⁡ \sin sin,从而成为奇函数)

当正弦、余弦中的 φ \varphi φ 不是 π 2 \frac {\pi}{2} 2π 的倍数时,那这个函数就是非奇非偶函数

4. 正余弦函数的对称性


1. 标准情况

正弦函数

对称轴:正弦函数在每个周期内都有两个对称轴,一个处于波峰处,一个处于波谷处,所以从标准正弦函数图像中可以看出,在一个周期内对称轴为: π 2 、 3 π 2 \frac {\pi}{2}、\frac {3\pi}{2} 2π23π,按照这个规律,当函数图像是多个周期时,对称轴公式为: π 2 + k π \frac {\pi}{2} + k\pi 2π+

对称中心:正弦函数图像中所有与 x x x 轴的交点都是对称中心,所以从标准正弦函数图像中可以看出,一个周期内的对称中心分别有: ( 0 , 0 ) 、 ( π , 0 ) 、 ( 2 π , 0 ) (0, 0)、(\pi, 0)、(2\pi, 0) (0,0)(π,0)(2π,0),按照这个规律,当函数图像是多个周期时,对称中心公式为: ( k π , 0 ) (k\pi, 0) (,0)

余弦函数

对称轴:余弦函数在每个周期内也有两个对称轴,也是一个处于波峰处,一个处于波谷处,所以从标准余弦函数图像中可以看出,在一个周期内对称轴为: π 、 2 π \pi、2\pi π2π,按照这个规律,当函数图像是多个周期时,对称轴公式为: k π k\pi

对称中心:余弦函数图像中所有与 x x x 轴的交点都是对称中心,所以从标准余弦函数图像中可以看出,一个周期内的对称中心分别是: π 2 、 3 π 2 \frac {\pi}{2}、\frac {3\pi}{2} 2π23π,按照这个规律,当函数图像是多个周期时,对称中心公式为: ( π 2 + k π , 0 ) (\frac {\pi}{2} + k\pi, 0) (2π+,0)

2. 解析式为复杂情况时

通过五点法画函数图像时可以总结到一个规律,不管三角函数的参数多么复杂,最终都会让其满足那五个点,这就代表不管三角函数参数多么复杂,正弦和余弦函数图像的曲线比例是不变的。这也就代表不管三角函数参数多么复杂,对称轴也好,对称中心也好,仍然会满足标准函数的比例。

一个标准的正弦函数 sin ⁡ x \sin x sinx,当参数是 x x x 时,其对称轴为: π 2 + k π \frac {\pi}{2} + k\pi 2π+,即:对称轴的 x x x 点为 x = π 2 + k π x = \frac {\pi}{2} + k\pi x=2π+,假设有一个复杂的正弦函数 A sin ⁡ ( ω x + φ ) A\sin (\omega x + \varphi) Asin(ωx+φ),按照上面比例不变的观点,那么它的对称轴也应该是 π 2 + k π \frac {\pi}{2} + k\pi 2π+,即: ( ω x + φ ) = π 2 + k π (\omega x + \varphi) = \frac {\pi}{2} + k\pi (ωx+φ)=2π+,即,对称轴的 x x x 点为 x = π 2 + k π + φ ω x =\frac {\frac {\pi}{2} + k\pi + \varphi}{\omega} x=ω2π++φ

正弦和余弦复杂函数的对称轴和对称中心都是这个道理,比例是不变的。

还有一种复杂函数 A sin ⁡ ( ω x + φ ) ± b A\sin (\omega x + \varphi) \pm b Asin(ωx+φ)±b,这里 ± b \pm b ±b 只会让函数图像上下移动,所以对称轴是不会受影响的,但是会影响对称中心,所以对称中心需要在标准的结果上 ± b \pm b ±b


例 1: 求函数 f ( x ) = 3 cos ⁡ ( 2 x + π 3 ) + 1 f(x) = 3 \cos (2x + \frac {\pi}{3}) + 1 f(x)=3cos(2x+3π)+1 的对称轴?

解:

思路1:因为要求对称轴,所以末尾的 + 1 +1 +1 不用管

思路2:余弦函数的标准对称轴是 k π k\pi ,所以只要让 2 x + π 3 = k π 2x + \frac {\pi}{3} = k\pi 2x+3π= 即可

结果:最后解得对称轴的定义域为: x = k π 2 − π 6 x = \frac {k\pi}{2} - \frac {\pi}{6} x=26π

例 2: 求函数 f ( x ) = 3 sin ⁡ ( 3 x − π 4 ) − 5 f(x) = 3 \sin (3x - \frac {\pi}{4}) -5 f(x)=3sin(3x4π)5 的对称中心?

解:

思路1:因为要求对称中心,所以末尾的 − 5 -5 5, 最后不能忘记

思路2:正弦函数的标准对称中心是 ( k π , 0 ) (k\pi, 0) (,0),所以只要让 ( 3 x − π 4 ) = k π (3x - \frac {\pi}{4}) = k\pi (3x4π)= 即可

结果:最后解得对称中心的定义域为: x = k π 3 + π 12 x = \frac {k\pi}{3} + \frac {\pi}{12} x=3+12π,正常对称中心的 y y y 轴值为 0 0 0,但是这里要把末尾的 − 5 -5 5 算上,即中心对称点为: [ ( k π 3 + π 12 ) , − 5 ] [(\frac {k\pi}{3} + \frac {\pi}{12}), -5] [(3+12π),5]

5. 正余弦函数的单调性


1. 标准情况

标准的正弦函数,在 [ − π 2 + 2 k π , π 2 + 2 k π ] [-\frac {\pi}{2} + 2k\pi, \frac {\pi}{2} + 2 k\pi] [2π+2,2π+2] 区间内递增,在 [ π 2 + 2 k π , 3 π 2 + 2 k π ] [\frac {\pi}{2} + 2 k\pi, \frac {3\pi}{2} + 2k\pi] [2π+2,23π+2] 区间内递减

标准的余弦函数,在 [ − π + 2 k π , 2 k π ] [-\pi + 2k\pi, 2k\pi] [π+2,2] 区间内递增,在 [ 2 k π , π + 2 k π ] [2k\pi, \pi + 2k\pi] [2,π+2] 区间内递减

2. 解析式为复杂情况时

上一章节记载了,不管三角函数的参数多么复杂,其函数图像比例不变,从而对称性和对称中心不变。单调性也是相同的的理论

以正弦函数举例,标准正弦函数的递增区间是 [ − π 2 + 2 k π , π 2 + 2 k π ] [-\frac {\pi}{2} + 2k\pi, \frac {\pi}{2} + 2 k\pi] [2π+2,2π+2],即: − π 2 + 2 k π ≤ x ≤ π 2 + 2 k π -\frac {\pi}{2} + 2k\pi \leq x \leq \frac {\pi}{2} + 2 k\pi 2π+2x2π+2,假设有一个复杂的正弦函数 A sin ⁡ ( ω x + φ ) A\sin (\omega x + \varphi) Asin(ωx+φ),此时如果依然按照前面直接等量替换的做法,它的单调递增区间应该是 − π 2 + 2 k π ≤ ( ω x + φ ) ≤ π 2 + 2 k π -\frac {\pi}{2} + 2k\pi \leq (\omega x + \varphi) \leq \frac {\pi}{2} + 2 k\pi 2π+2(ωx+φ)2π+2,即: − π 2 + 2 k π − φ ω ≤ x ≤ π 2 + 2 k π − φ ω \frac {-\frac {\pi}{2} + 2k\pi - \varphi}{\omega} \leq x \leq \frac {\frac {\pi}{2} + 2k\pi - \varphi}{\omega} ω2π+2φxω2π+2φ,其实这个结果不一定是准确的

等量替换这个思路是正确的,但是在等量替换之前,有一个非常重要的步骤一定要做,就是考虑跟谁等量替换

其实一个复杂的三角函数 sin ⁡ ( ω x + φ ) \sin (\omega x + \varphi) sin(ωx+φ) ,可以看作成一个复合函数 { f ( t ) = sin ⁡ t t ( x ) = ω x + φ \begin {cases} f(t) = \sin t\\ t(x) = \omega x + \varphi \end {cases} {f(t)=sintt(x)=ωx+φ,而复合函数的单调性就涉及到同增异减的知识点了,所以想求 sin ⁡ ( ω x + φ ) \sin (\omega x + \varphi) sin(ωx+φ) 的单调性,那就得先确定 t ( x ) t(x) t(x) 是增函数还是减函数

求复杂三角函数的单调性的具体思路如下:

1. 求 sin ⁡ ( ω x + φ ) \sin (\omega x + \varphi) sin(ωx+φ) 的单调递增区间:

  • t ( x ) t(x) t(x) 是增函数时,根据同增异减,所以就用标准正弦函数的增区间进行等量替换
  • t ( x ) t(x) t(x) 是减函数时,根据同增异减,所以就用标准正弦函数的减区间进行等量替换

2. 求 sin ⁡ ( ω x + φ ) \sin (\omega x + \varphi) sin(ωx+φ) 的单调递减区间:

  • t ( x ) t(x) t(x) 是增函数时,根据同增异减,所以就用标准正弦函数的减区间进行等量替换
  • t ( x ) t(x) t(x) 是减函数时,根据同增异减,所以就用标准正弦函数的增区间进行等量替换

例 1:函数 f ( x ) = 3 sin ⁡ ( 2 x − π 3 ) f(x) = 3\sin(2x - \frac {\pi}{3}) f(x)=3sin(2x3π) 的单调区间是?

解:

思路1:因为求的是单调区间,所以系数 3 3 3 并不影响定义域,只需要关注 sin ⁡ ( 2 x − π 3 ) \sin(2x - \frac {\pi}{3}) sin(2x3π) 即可

思路2:因为 sin ⁡ ( 2 x − π 3 ) \sin(2x - \frac {\pi}{3}) sin(2x3π) 是一个复杂正弦函数,所以将其看成一个复合函数 { f ( t ) = sin ⁡ t t ( x ) = 2 x − π 3 \begin {cases} f(t) = \sin t\\ t(x) =2x - \frac {\pi}{3} \end {cases} {f(t)=sintt(x)=2x3π

思路3:因为 2 x − π 3 2x - \frac {\pi}{3} 2x3π 是一个 x x x 系数大于 0 0 0 的一次函数,所以 t ( x ) t(x) t(x) 是单调递增函数

思路4:先求 f ( x ) = 3 sin ⁡ ( 2 x − π 3 ) f(x) = 3\sin(2x - \frac {\pi}{3}) f(x)=3sin(2x3π) 的递增区间,因为 t ( x ) t(x) t(x) 是增函数,按照同增递减理论, 2 x − π 3 2x - \frac {\pi}{3} 2x3π 的增区间应该等于标准正弦函数的增区间,即: − π 2 + 2 k π ≤ ( 2 x − π 3 ) ≤ π 2 + 2 k π -\frac {\pi}{2} + 2k\pi \leq (2x - \frac {\pi}{3}) \leq \frac {\pi}{2} + 2 k\pi 2π+2(2x3π)2π+2,解后得: k π − π 12 ≤ x ≤ k π + 5 π 3 k\pi - \frac {\pi}{12} \leq x \leq k\pi+\frac {5\pi}{3} 12πx+35π,整理后为: [ k π − π 12 , k π + 5 π 3 ] [k\pi - \frac {\pi}{12},k\pi+\frac {5\pi}{3}] [12π,+35π]

思路5:再求 f ( x ) = 3 sin ⁡ ( 2 x − π 3 ) f(x) = 3\sin(2x - \frac {\pi}{3}) f(x)=3sin(2x3π) 的递减区间,因为 t ( x ) t(x) t(x) 是增函数,按照同增递减理论, 2 x − π 3 2x - \frac {\pi}{3} 2x3π 的减区间应该等于标准正弦函数的减区间,即: π 2 + 2 k π ≤ ( 2 x − π 3 ) ≤ 3 π 2 + 2 k π \frac {\pi}{2} + 2 k\pi \leq (2x - \frac {\pi}{3}) \leq \frac {3\pi}{2} + 2k\pi 2π+2(2x3π)23π+2,关于 x x x 的不等式就不算了,太麻烦了。


例 2:函数 f ( x ) = 3 sin ⁡ ( π 3 − 2 x ) f(x) = 3\sin(\frac {\pi}{3} - 2x) f(x)=3sin(3π2x) 的单调区间是?

思路1:因为求的是单调区间,所以系数 3 3 3 并不影响定义域,只需要关注 sin ⁡ ( π 3 − 2 x ) \sin(\frac {\pi}{3} - 2x) sin(3π2x) 即可

思路2:因为 sin ⁡ ( π 3 − 2 x ) \sin(\frac {\pi}{3} - 2x) sin(3π2x) 是一个复杂正弦函数,所以将其看成一个复合函数 { f ( t ) = sin ⁡ t t ( x ) = π 3 − 2 x \begin {cases} f(t) = \sin t\\ t(x) =\frac {\pi}{3} - 2x \end {cases} {f(t)=sintt(x)=3π2x

思路3:因为 π 3 − 2 x \frac {\pi}{3} - 2x 3π2x 是一个 x x x 系数小于 0 0 0 的一次函数,所以 t ( x ) t(x) t(x) 是单调递减函数

思路4:先求 f ( x ) = 3 sin ⁡ ( π 3 − 2 x ) f(x) = 3\sin(\frac {\pi}{3} - 2x) f(x)=3sin(3π2x) 的递增区间,因为 t ( x ) t(x) t(x) 是减函数,按照同增递减理论, π 3 − 2 x \frac {\pi}{3} - 2x 3π2x 的增区间应该等于标准正弦函数的减区间,即: π 2 + 2 k π ≤ ( π 3 − 2 x ) ≤ 3 π 2 + 2 k π \frac {\pi}{2} + 2 k\pi \leq (\frac {\pi}{3} - 2x) \leq \frac {3\pi}{2} + 2k\pi 2π+2(3π2x)23π+2

思路5:再求 f ( x ) = 3 sin ⁡ ( π 3 − 2 x ) f(x) = 3\sin(\frac {\pi}{3} - 2x) f(x)=3sin(3π2x) 的递减区间,因为 t ( x ) t(x) t(x) 是减函数,按照同增递减理论, π 3 − 2 x \frac {\pi}{3} - 2x 3π2x 的减区间应该等于标准正弦函数的增区间,即: − π 2 + 2 k π ≤ ( π 3 − 2 x ) ≤ π 2 + 2 k π -\frac {\pi}{2} + 2k\pi \leq (\frac {\pi}{3} - 2x) \leq \frac {\pi}{2} + 2 k\pi 2π+2(3π2x)2π+2

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值