一、集合
1. 集合和元素的概念
1. 一堆东西放在一起就是一个集合,里面的每个东西都叫做元素
2. 集合有三个特性:
- 确定性:给出一个元素,要么属于这个集合,要么不属于这个集合,不会出现模棱两可的情况
- 无序性:集合中的元素没有顺序概念,当两个集合中元素相同、顺序不同时,这两个集合依然相等
- 互异性:一个集合内,不能出现重复的元素
3. 常用一个大写的英文字母代表一个集合,但是有一些有特殊意义的字母建议不要使用:
- N:代表由 0 和 所有正整数组成的自然数集合,N = {0, 1, 2, …}
- Z:代表由 正整数、负整数 和 0 组成的整数集合,Z = {-1, 0, 2…}
4. 集合的内容,有下面几种常见的表示方式:
- 空集:一个空的大括号即可, 或者使用空集的专属符号
例:A = {} 或 A = ∅ \varnothing ∅ - 列举法:
把元素全都写在大括号内,并用逗号把每个元素隔开。
例:A = {1, 2, 3, 4} 就是一个集合 - 描述法:
在大括号内把集合中元素的共性描述出来。
例:A = { x | x > 0},竖线前的 x 代表集合中的所有元素,竖线后的 x > 0 代表所有元素都要满足大于 0 的条件 - 图像法:利用维恩图(Venn diagram)来表示
5. 集合和元素的所属关系
假设有集合 A 和 元素 a,当元素 a 属于集合 A 时写为 a ∈ A a \in A a∈A,否则写为 a ∉ A a \notin A a∈/A
2. 集合间的关系
1. 子集
假设有 A 和 B 两个集合,当它们的关系满足下面三种情况中任意一种时,就是子集关系:
- B 集合中的元素和 A 集合中的元素完全相同
如:当 A = {1,2, 3},B = {1, 2, 3} 时 - B 集合中的所有元素,在 A 集合中都有,并且 A 集合中的元素更多
如:当 A = {1,2, 3},B = {1, 2} 时 - B 集合是空集
如:当 A = {1,2, 3},B = ∅ \varnothing ∅ 时
当满足上面条件时,就说明 B 集合 是 A 集合 的子集,叫做 B 包含于 A,记做 B ⊆ A B \subseteq A B⊆A,注意符号开口向着包含于的集合
2. 真子集
真子集是子集中的一种,当明确了 [ B 集合中的所有元素,在 A 集合中都有,并且 A 集合中的元素更多时 ],就代表 B 集合 是 A 集合 的真子集,记做 B ⫅ A B \subseteqq A B⫅A,叫做 B 是 A 的真子集,注意符号开口向着全集
例:当明确了两个集合分别为 A = {1,2, 3},B = {1, 2} 时,就代表 B 是 A 的真子集,记做 B ⫅ A B \subseteqq A B⫅A
3. 空集
空集是所有集合的子集,是所有非空集合的真子集
4. 集合相等
当两个集合中的所有元素都相同时,代表两个集合相等,也就是说当 B 是 A 的子集,并且不是 A 的真子集时,A = B
3. 集合间的运算
1. 交集
交集运算:找到两个集合中相同的元素
例:
A = {1, 2, 3, 5, 6},B = {2, 5, 6, 7},想找到 集合 A 和 集合 B 中的相同元素,就可以使用交集运算,叫做 A 交 B,记做 A ∩ B A \cap B A∩B,其结果也是一个集合,为 {2, 5, 6}
2. 并集
并集运算:将两个集合中的元素叠加
例:
A = {1, 2, 3, 5, 6},B = {2, 5, 6, 7},想让 集合 A 和 集合 B 中的元素叠加,就可以使用并集运算,叫做 A 并 B,记做 A ∪ B A \cup B A∪B,其结果也是一个集合,为 {1, 2, 3, 5, 6, 7}。注意:并集后的集合也要满足集合的互斥性
3. 补集
补集运算:找到子集比全集少的元素
例:
A = {1, 2, 3, 5, 6},B = {2, 3, 5},想找到 B 集合 比 A 集合 少的元素,因为 B 是 A 的子集(也是真子集),所以可以使用补集运算,叫做 B 补 A,记做 ∁ A B \complement_AB ∁AB,其结果也是一个集合,为 {1, 6}
二、函数
1. 区间和无穷大
区间用来表示集合元素的取值范围,它有以下几种形式:
- 闭区间:包含区间范围的两个端点,记为 [ x , y ] [x, y] [x,y],如: [ 2 , 5 ] ,意思为: 2 < = x < = 5 [2, 5],意思为:2 <= x <= 5 [2,5],意思为:2<=x<=5
- 开区间:不包含区间范围的两个端点,记为 ( x , y ) (x, y) (x,y),如: ( 2 , 5 ) ,意思为 2 < x < 5 (2, 5),意思为2 < x < 5 (2,5),意思为2<x<5
- 半开半闭区间:区间范围中一个端点被包含,一个不被包涵,记为 [ x , y ) 或 ( x , y ] [x, y) 或 (x, y] [x,y)或(x,y],如: [ 2 , 5 ) ,意思为 2 < = x < 5 ,或 ( 2 , 5 ] ,意思为 2 < x < = 5 [2, 5),意思为2 <= x < 5,或 (2, 5],意思为2 < x <= 5 [2,5),意思为2<=x<5,或(2,5],意思为2<x<=5
无穷大的符号是:+ ∞ \infty ∞,无穷小的符号是:- ∞ \infty ∞
当区间包含无穷时,无穷的那边必须使用开区间符号,也就是只有下面几种情况:
- 无穷小 < x < = 5 ,记为 ( − ∞ , 5 ] 无穷小 < x <= 5 ,记为(-\infty, 5 ] 无穷小<x<=5,记为(−∞,5]
- 无穷小 < x < 5 ,记为 ( − ∞ , 5 ) 无穷小 < x < 5 ,记为(-\infty, 5 ) 无穷小<x<5,记为(−∞,5)
- 2 < x < 无穷大,记为 ( 2 , + ∞ ) 2 < x <无穷大,记为(2, +\infty) 2<x<无穷大,记为(2,+∞)
- 2 < = x < 无穷大时,记为 [ 2 , + ∞ ) 2 <= x <无穷大时,记为[2, +\infty) 2<=x<无穷大时,记为[2,+∞)
区间的例子:用区间表示集合{x | 1<= x <= 3 或 x > 4},结果为: [ 1 , 3 ] ∪ ( 4 , + ∞ ) [1, 3] \cup(4, +\infty) [1,3]∪(4,+∞)
2. 函数三要素
初中的时候,学习了函数的表达式是 y = x y = x y=x,x 是自变量,y 是随着 x 变化而变化的因变量,每个 x 都有一个唯一对应的 y,到了高中阶段,函数的概念会在初中的基础上被进一步加深,它新增了定义域、值域、对应法则三大要素
1. 定义域
定义域是函数表达式中自变量 x 的新名称,在高中的概念里,将 x 可能会出现的值,看作一个集合,将这个集合称为定义域
2. 值域
值域是函数表达式中因变量 y 的新名称,因为每个 x 都有一个唯一的 y,又因为现在 x 被看作一个集合,所以 y 也应该被看作成一个集合,这个集合的名称就是值域,集合中的每个元素都和定义域中的元素唯一对应
3. 对应法则
定义域中的元素与值域中的元素是一一对应的,它们的对应规则就叫对应法则,常用 f f f 表示对应法则的名称,当然也可以使用其他字母
假设有对应法则为 f ( x ) = x 2 + 1 f(x) = x^2 + 1 f(x)=x2+1,问 f ( 2 ) f(2) f(2) 的值是多少?可以这样解读:
- f ( x ) f(x) f(x):对应法则的名称是 f f f,其法则可以处理的范围是名为 x x x 的定义域
- x 2 + 1 x^2 + 1 x2+1:这个是法则的内容,也就是定义域中元素和值域中元素的对应关系
- f ( 2 ) f(2) f(2):通过对应法则,在值域中找到定义域中元素 2 所对应的值
综上所述,这个题的解为: f ( 2 ) = 2 2 + 1 = 5 f(2)=2^2 + 1=5 f(2)=22+1=5,定义域中元素 2 2 2 所对应的值域中的元素为 5 5 5
3. 具体函数和抽象函数
1. 具体函数: 拥有具体的对应法则内容,如: f ( x ) = x 2 + 1 f(x) = x^2 + 1 f(x)=x2+1
经常会有求具体函数定义域的题,解题思路是通过已知的对应法则和法则内容,推断出定义域 x x x 的范围
例:求函数 f ( x ) = 1 x − 1 f(x) = \frac {1}{x-1} f(x)=x−11 的定义域?
解:因为分母不能为 0,所以 x − 1 ≠ 0 x - 1 \neq 0 x−1=0, x ≠ 1 x \neq 1 x=1,定义域为:{
x ∣ x ≠ 1 x | x \neq 1 x∣x=1} 或使用区间表示: ( − ∞ , 1 ) ∪ ( 1 , + ∞ ) (-\infty, 1)\cup(1, +\infty) (−∞,1)∪(1,+∞)
2. 抽象函数: 没有具体的对应法则内容,但是有具体的法则处理范围,如: f ( x > 10 ) f(x > 10) f(x>10)
经常会有求抽象函数定义域的题,一般这种题型有一个很重要的口诀,先记住:定义域是 x,括号内相等
例:已知 f ( 2 x + 1 ) f(2x + 1) f(2x+1) 的定义域是 ( 3 , 5 ) (3, 5) (3,5),求 f ( x − 1 ) f(x-1) f(x−1) 的定义域?
解:
步骤1:题目给出定义域是 ( 3 , 5 ) (3, 5) (3,5),运用口诀中的【定义域是 x】可以得出 3 < x < 5 3 < x < 5 3<x<5
步骤2: f ( 2 x + 1 ) f(2x + 1) f(2x+1) 没有具体法则内容,所以是抽象函数,接下来先求出这个抽象函数的处理范围,也就是 2 x + 1 2x + 1 2x+1 ,第一步时已知了 x x x 的范围,只要把 x x x 带入进 2 x + 1 2x + 1 2x+1 中,就可以算出函数范围是 ( 7 , 11 ) (7, 11) (7,11)
步骤3:继续阅题, 求 f ( x − 1 ) f(x-1) f(x−1) 的定义域?因为口诀说了 【定义域是 x】,所以要求的就是 x x x,但这里的 x x x 和 题目前半段给出的那个 x x x 虽然名字相同,但不是同一个,这是一个新的 x x x,是需要我们求的 x x x
步骤4,运用口诀中的【括号内相等】:函数法则名称是 f ( x − 1 ) f(x-1) f(x−1),这说明还是刚才的那个函数 f f f,既然是刚才那个函数,那么它的处理范围肯定仍然是 (7, 11),也就是 7 < x − 1 < 11 7 < x-1 < 11 7<x−1<11,这也就是第二个口诀 括号内相等 的原因,最后算出 f ( x − 1 ) f(x-1) f(x−1) 定义域是: 8 < x < 12 8 < x < 12 8<x<12
4. 判断同一函数
定义域和对应法则都相同时,就是同一函数。(和对应法则的名字没关系,指的是和对应法则的内容相同)
5. 求函数值
1. 直接代入
例:已知 f ( x ) = x 2 + 1 ,求 f ( 3 ) 的值 f(x) = x^2 + 1,求 f(3) 的值 f(x)=x2+1,求f(3)的值
直接将所有的 x x x 替换成 3 就可以, f ( 3 ) = 3 2 + 1 = 10 f(3) = 3^2 + 1 = 10 f(3)=32+1=10
2. 求出 x 后代入
例:已知 f ( x + 1 ) = x 2 + 1 ,求 f ( 3 ) 的值 f(x + 1) = x^2 + 1,求 f(3) 的值 f(x+1)=x2+1,求f(3)的值
这种不能直接将 x x x 替换成 3,需要先计算出 x x x 的值,也就是 x + 1 = 3 , x = 2 x + 1 = 3,x = 2 x+1=3,x=2,然后将所有 x x x 都替换成 2 就可以, f ( 3 ) = f ( 2 + 1 ) = 2 2 + 1 = 5 f(3) = f(2 + 1) = 2 ^2 + 1 = 5 f(3)=f(2+1)=22+1=5
6. 换元法求函数解析式
例:已知 f ( x + 3 ) = x 2 + 1 f(x + 3) = x^2 + 1 f(x+3)=x2+1,求 f ( x ) f(x) f(x) 的解析式
解:
步骤1:令 t = x + 3 t = x + 3 t=x+3
步骤2:将 f ( x + 3 ) f(x + 3) f(x+3) 变成关于 t t t 的函数 f ( t ) f(t) f(t)
步骤3:因为 t = x + 3 t = x + 3 t=x+3,所以 x = t − 3 x = t - 3 x=t−3,得出关于 t t t 的函数为: f ( t ) = ( t − 3 ) 2 + 1 f(t) = (t-3)^2 + 1 f(t)=(t−3)2+1
步骤4:计算 ( t − 3 ) 2 + 1 (t-3)^2 + 1 (t−3)2+1 ,得: f ( t ) = t 2 − 6 t + 10 f(t) = t^2 - 6t + 10 f(t)=t2−6t+10
步骤5:把 t t t 变回 x x x, f ( x ) = x 2 − 6 x + 10 f(x) = x^2 - 6x + 10 f(x)=x2−6x+10
7. 映射
映射和函数的概念差不太多,都是表示两个集合之间存在对应的关系
函数是一种特殊的映射,通常两个数字集合间有对应关系叫做函数,非数字集合间有对应关系叫做映射
数据的来源在函数中叫做定义域,在映射中叫做原象,源数据所对应的集合在函数中叫做值域,在映射中叫做象
当,A 集合是原象,B 集合是象,记做 f : A → B f:A→B f:A→B,读做 A 集合到 B 集合的映射
8. 函数的表示方法
常见的函数表示方法有:
- 列表法:通过表格表示 x 和 y 的对应关系
- 图像法:通过平面直角坐标系表示 x 和 y 的对应关系
- 解析法:用解析式表示 x 和 y 的对应关系
9. 分段函数
分段函数是在一个函数中,有多个解析式,然后根据不同的条件使用不同的解析式
例:
f ( x ) = { x + 1 , x > 0 1 − x , x ≤ 0 f(x) = \begin{cases} x + 1,x \gt 0 \\ 1 - x,x \leq 0 \end{cases} f(x)={ x+1,x>01−x,x≤0 ,求 f ( 3 ) + f ( − 1 ) f(3) + f(-1) f(3)+f(−1)
解:
这个函数中,有两个解析式,分别对应 x > 0 x \gt 0 x>0 时的表达式 和 x ≤ 0 x \leq 0 x≤0 时的表达式
因为 3 > 0 3 \gt 0 3>0,所以 f ( 3 ) f(3) f(3) 应该用 x + 1 x + 1 x+1 这个解析式,既 f ( 3 ) = 3 + 1 = 4 f(3) = 3 + 1 = 4 f(3)=3+1=4
因为 − 1 ≤ 0 -1 \leq 0 −1≤0,所以 f ( − 1 ) f(-1) f(−1) 应该用 1 − x 1 - x 1−x 这个解析式,既 f ( − 1 ) = 1 − ( − 1 ) = 2 f(-1) = 1 - (-1) = 2 f(−1)=1−(−1)=2
因为 f ( 3 ) = 4 , f ( − 1 ) = 2 f(3) = 4,f(-1) = 2 f(3)=4,f(−1)=2,所以 f ( 3 ) + f ( − 1 ) = 6 f(3) + f(-1) = 6 f(3)+f(−1)=6
注意,带绝对值的函数,也是分段函数。如 f ( x ) = ∣ x ∣ ( x + 1 ) f(x) = \vert x \vert (x + 1) f(x)=∣x∣(x+1) ,就是一个分段函数,当 x ≥ 0 x \geq 0 x≥0 时,解析式为 x ( x + 1 ) x(x + 1) x(x+1),当 x < 0 x \lt 0 x<0 时,解析式为 − x ( x + 1 ) -x(x + 1) −x(x+1)
10. 抽象函数图像的平移
与一次、二次、反比例函数图像平移的口诀一样,也是:上加下减在末尾,左加右减在 x x x
抽象函数 y = f ( 2 x + 1 ) y = f(2x + 1) y=f(2x+1) 平移,例:
左移五个单位, y = f ( 2 ( x + 5 ) + 1 ) y = f(2(x + 5) + 1) y=f(2(x+5)+1)
右移五个单位, y = f ( 2 ( x − 5 ) + 1 ) y = f(2(x - 5) + 1) y=f(2(x−5)+1)
上移五个单位, y = f ( 2 x + 1 ) + 5 y = f(2x + 1) + 5 y=f(2x+1)+5
下移五个单位, y = f ( 2 x + 1 ) − 5 y = f(2x + 1) - 5 y=f(2x+1)−5
11. 函数的周期性
周期性从函数图像上来说,是一个有循环规律的图像,当 x x x 每增长特定长度后, y y y 就会回到最初的点开始新的一轮循环,这种函数就具备周期性
函数的周期
x x x 每增长特定的距离, y y y 就会开始新的一轮循环, 这个特定的距离就是函数的周期
f ( x ) = f ( x + t ) f(x)=f(x + t) f(x)=f(x+t) 时,当 x x x 增长了 t t t 个距离后, y y y 的值与最初的值相等,说明这个函数具有周期性,而 t t t 就是这个函数的周期
从具有周期性的函数中找到周期的常见题型
(1) f ( x ) = f ( x + t ) f(x)=f(x + t) f(x)=f(x+t) :从 x x x 向左移动了 t t t 个距离后, y y y 开始新的循环,所以周期是 t t t
(2) f ( x ) = f ( x − t ) f(x)=f(x - t) f(x)=f(x−t):从 x x x 向右移动了 t t t 个距离后, y y y 开始新的循环,所以周期是 t t t
(3) f ( x − a ) = f ( x + a ) f(x - a)=f(x + a) f(x−a)=f(x+a):从数轴上看, − a -a −a 到 + a +a +a 的距离是 2 a 2a 2a,所以周期是 2