考研数二要掌握的高中知识点(一)


一、集合

1. 集合和元素的概念


1. 一堆东西放在一起就是一个集合,里面的每个东西都叫做元素

2. 集合有三个特性:

  • 确定性:给出一个元素,要么属于这个集合,要么不属于这个集合,不会出现模棱两可的情况
  • 无序性:集合中的元素没有顺序概念,当两个集合中元素相同、顺序不同时,这两个集合依然相等
  • 互异性:一个集合内,不能出现重复的元素

3. 常用一个大写的英文字母代表一个集合,但是有一些有特殊意义的字母建议不要使用:

  • N:代表由 0 和 所有正整数组成的自然数集合,N = {0, 1, 2, …}
  • Z:代表由 正整数、负整数 和 0 组成的整数集合,Z = {-1, 0, 2…}

4. 集合的内容,有下面几种常见的表示方式:

  • 空集:一个空的大括号即可, 或者使用空集的专属符号
    例:A = {} 或 A = ∅ \varnothing
  • 列举法:
    把元素全都写在大括号内,并用逗号把每个元素隔开。
    例:A = {1, 2, 3, 4} 就是一个集合
  • 描述法:
    在大括号内把集合中元素的共性描述出来。
    例:A = { x | x > 0},竖线前的 x 代表集合中的所有元素,竖线后的 x > 0 代表所有元素都要满足大于 0 的条件
  • 图像法:利用维恩图(Venn diagram)来表示

5. 集合和元素的所属关系

假设有集合 A 和 元素 a,当元素 a 属于集合 A 时写为 a ∈ A a \in A aA,否则写为 a ∉ A a \notin A a/A

2. 集合间的关系


1. 子集

假设有 A 和 B 两个集合,当它们的关系满足下面三种情况中任意一种时,就是子集关系:

  1. B 集合中的元素和 A 集合中的元素完全相同
    如:当 A = {1,2, 3},B = {1, 2, 3} 时
  2. B 集合中的所有元素,在 A 集合中都有,并且 A 集合中的元素更多
    如:当 A = {1,2, 3},B = {1, 2} 时
  3. B 集合是空集
    如:当 A = {1,2, 3},B = ∅ \varnothing

当满足上面条件时,就说明 B 集合 是 A 集合 的子集,叫做 B 包含于 A,记做 B ⊆ A B \subseteq A BA,注意符号开口向着包含于的集合

2. 真子集

真子集是子集中的一种,当明确了 [ B 集合中的所有元素,在 A 集合中都有,并且 A 集合中的元素更多时 ],就代表 B 集合 是 A 集合 的真子集,记做 B ⫅ A B \subseteqq A BA,叫做 B 是 A 的真子集,注意符号开口向着全集

例:当明确了两个集合分别为 A = {1,2, 3},B = {1, 2} 时,就代表 B 是 A 的真子集,记做 B ⫅ A B \subseteqq A BA

3. 空集

空集是所有集合的子集,是所有非空集合的真子集

4. 集合相等

当两个集合中的所有元素都相同时,代表两个集合相等,也就是说当 B 是 A 的子集,并且不是 A 的真子集时,A = B


3. 集合间的运算


1. 交集

交集运算:找到两个集合中相同的元素

例:

A = {1, 2, 3, 5, 6},B = {2, 5, 6, 7},想找到 集合 A 和 集合 B 中的相同元素,就可以使用交集运算,叫做 A 交 B,记做 A ∩ B A \cap B AB,其结果也是一个集合,为 {2, 5, 6}


2. 并集

并集运算:将两个集合中的元素叠加

例:

A = {1, 2, 3, 5, 6},B = {2, 5, 6, 7},想让 集合 A 和 集合 B 中的元素叠加,就可以使用并集运算,叫做 A 并 B,记做 A ∪ B A \cup B AB,其结果也是一个集合,为 {1, 2, 3, 5, 6, 7}。注意:并集后的集合也要满足集合的互斥性


3. 补集

补集运算:找到子集比全集少的元素

例:

A = {1, 2, 3, 5, 6},B = {2, 3, 5},想找到 B 集合 比 A 集合 少的元素,因为 B 是 A 的子集(也是真子集),所以可以使用补集运算,叫做 B 补 A,记做 ∁ A B \complement_AB AB,其结果也是一个集合,为 {1, 6}

二、函数

1. 区间和无穷大


区间用来表示集合元素的取值范围,它有以下几种形式:

  • 闭区间:包含区间范围的两个端点,记为 [ x , y ] [x, y] [x,y],如: [ 2 , 5 ] ,意思为: 2 < = x < = 5 [2, 5],意思为:2 <= x <= 5 [2,5],意思为:2<=x<=5
  • 开区间:不包含区间范围的两个端点,记为 ( x , y ) (x, y) (x,y),如: ( 2 , 5 ) ,意思为 2 < x < 5 (2, 5),意思为2 < x < 5 (2,5),意思为2<x<5
  • 半开半闭区间:区间范围中一个端点被包含,一个不被包涵,记为 [ x , y ) 或 ( x , y ] [x, y) 或 (x, y] [x,y)(x,y],如: [ 2 , 5 ) ,意思为 2 < = x < 5 ,或 ( 2 , 5 ] ,意思为 2 < x < = 5 [2, 5),意思为2 <= x < 5,或 (2, 5],意思为2 < x <= 5 [2,5),意思为2<=x<5,或(2,5],意思为2<x<=5

无穷大的符号是:+ ∞ \infty ,无穷小的符号是:- ∞ \infty

当区间包含无穷时,无穷的那边必须使用开区间符号,也就是只有下面几种情况:

  • 无穷小 < x < = 5 ,记为 ( − ∞ , 5 ] 无穷小 < x <= 5 ,记为(-\infty, 5 ] 无穷小<x<=5,记为(,5]
  • 无穷小 < x < 5 ,记为 ( − ∞ , 5 ) 无穷小 < x < 5 ,记为(-\infty, 5 ) 无穷小<x<5,记为(,5)
  • 2 < x < 无穷大,记为 ( 2 , + ∞ ) 2 < x <无穷大,记为(2, +\infty) 2<x<无穷大,记为(2,+)
  • 2 < = x < 无穷大时,记为 [ 2 , + ∞ ) 2 <= x <无穷大时,记为[2, +\infty) 2<=x<无穷大时,记为[2,+)

区间的例子:用区间表示集合{x | 1<= x <= 3 或 x > 4},结果为: [ 1 , 3 ] ∪ ( 4 , + ∞ ) [1, 3] \cup(4, +\infty) [1,3](4,+)

2. 函数三要素


初中的时候,学习了函数的表达式是 y = x y = x y=x,x 是自变量,y 是随着 x 变化而变化的因变量,每个 x 都有一个唯一对应的 y,到了高中阶段,函数的概念会在初中的基础上被进一步加深,它新增了定义域、值域、对应法则三大要素

1. 定义域

定义域是函数表达式中自变量 x 的新名称,在高中的概念里,将 x 可能会出现的值,看作一个集合,将这个集合称为定义域

2. 值域

值域是函数表达式中因变量 y 的新名称,因为每个 x 都有一个唯一的 y,又因为现在 x 被看作一个集合,所以 y 也应该被看作成一个集合,这个集合的名称就是值域,集合中的每个元素都和定义域中的元素唯一对应

3. 对应法则

定义域中的元素与值域中的元素是一一对应的,它们的对应规则就叫对应法则,常用 f f f 表示对应法则的名称,当然也可以使用其他字母

假设有对应法则为 f ( x ) = x 2 + 1 f(x) = x^2 + 1 f(x)=x2+1,问 f ( 2 ) f(2) f(2) 的值是多少?可以这样解读:

  • f ( x ) f(x) f(x):对应法则的名称是 f f f,其法则可以处理的范围是名为 x x x 的定义域
  • x 2 + 1 x^2 + 1 x2+1:这个是法则的内容,也就是定义域中元素和值域中元素的对应关系
  • f ( 2 ) f(2) f(2):通过对应法则,在值域中找到定义域中元素 2 所对应的值

综上所述,这个题的解为: f ( 2 ) = 2 2 + 1 = 5 f(2)=2^2 + 1=5 f(2)=22+1=5,定义域中元素 2 2 2 所对应的值域中的元素为 5 5 5

3. 具体函数和抽象函数


1. 具体函数: 拥有具体的对应法则内容,如: f ( x ) = x 2 + 1 f(x) = x^2 + 1 f(x)=x2+1

经常会有求具体函数定义域的题,解题思路是通过已知的对应法则和法则内容,推断出定义域 x x x 的范围

例:求函数 f ( x ) = 1 x − 1 f(x) = \frac {1}{x-1} f(x)=x11 的定义域?

解:因为分母不能为 0,所以 x − 1 ≠ 0 x - 1 \neq 0 x1=0 x ≠ 1 x \neq 1 x=1,定义域为:{ x ∣ x ≠ 1 x | x \neq 1 xx=1} 或使用区间表示: ( − ∞ , 1 ) ∪ ( 1 , + ∞ ) (-\infty, 1)\cup(1, +\infty) (,1)(1,+)

2. 抽象函数: 没有具体的对应法则内容,但是有具体的法则处理范围,如: f ( x > 10 ) f(x > 10) f(x>10)

经常会有求抽象函数定义域的题,一般这种题型有一个很重要的口诀,先记住:定义域是 x,括号内相等

例:已知 f ( 2 x + 1 ) f(2x + 1) f(2x+1) 的定义域是 ( 3 , 5 ) (3, 5) (3,5),求 f ( x − 1 ) f(x-1) f(x1) 的定义域?

解:

步骤1:题目给出定义域是 ( 3 , 5 ) (3, 5) (3,5),运用口诀中的【定义域是 x】可以得出 3 < x < 5 3 < x < 5 3<x<5

步骤2: f ( 2 x + 1 ) f(2x + 1) f(2x+1) 没有具体法则内容,所以是抽象函数,接下来先求出这个抽象函数的处理范围,也就是 2 x + 1 2x + 1 2x+1 ,第一步时已知了 x x x 的范围,只要把 x x x 带入进 2 x + 1 2x + 1 2x+1 中,就可以算出函数范围是 ( 7 , 11 ) (7, 11) (7,11)

步骤3:继续阅题, 求 f ( x − 1 ) f(x-1) f(x1) 的定义域?因为口诀说了 【定义域是 x】,所以要求的就是 x x x,但这里的 x x x 和 题目前半段给出的那个 x x x 虽然名字相同,但不是同一个,这是一个新的 x x x,是需要我们求的 x x x

步骤4,运用口诀中的【括号内相等】:函数法则名称是 f ( x − 1 ) f(x-1) f(x1),这说明还是刚才的那个函数 f f f,既然是刚才那个函数,那么它的处理范围肯定仍然是 (7, 11),也就是 7 < x − 1 < 11 7 < x-1 < 11 7<x1<11,这也就是第二个口诀 括号内相等 的原因,最后算出 f ( x − 1 ) f(x-1) f(x1) 定义域是: 8 < x < 12 8 < x < 12 8<x<12

4. 判断同一函数


定义域和对应法则都相同时,就是同一函数。(和对应法则的名字没关系,指的是和对应法则的内容相同)

5. 求函数值


1. 直接代入

例:已知 f ( x ) = x 2 + 1 ,求 f ( 3 ) 的值 f(x) = x^2 + 1,求 f(3) 的值 f(x)=x2+1,求f(3)的值

直接将所有的 x x x 替换成 3 就可以, f ( 3 ) = 3 2 + 1 = 10 f(3) = 3^2 + 1 = 10 f(3)=32+1=10

2. 求出 x 后代入

例:已知 f ( x + 1 ) = x 2 + 1 ,求 f ( 3 ) 的值 f(x + 1) = x^2 + 1,求 f(3) 的值 f(x+1)=x2+1,求f(3)的值

这种不能直接将 x x x 替换成 3,需要先计算出 x x x 的值,也就是 x + 1 = 3 , x = 2 x + 1 = 3,x = 2 x+1=3x=2,然后将所有 x x x 都替换成 2 就可以, f ( 3 ) = f ( 2 + 1 ) = 2 2 + 1 = 5 f(3) = f(2 + 1) = 2 ^2 + 1 = 5 f(3)=f(2+1)=22+1=5

6. 换元法求函数解析式


例:已知 f ( x + 3 ) = x 2 + 1 f(x + 3) = x^2 + 1 f(x+3)=x2+1,求 f ( x ) f(x) f(x) 的解析式

解:

步骤1:令 t = x + 3 t = x + 3 t=x+3

步骤2:将 f ( x + 3 ) f(x + 3) f(x+3) 变成关于 t t t 的函数 f ( t ) f(t) f(t)

步骤3:因为 t = x + 3 t = x + 3 t=x+3,所以 x = t − 3 x = t - 3 x=t3,得出关于 t t t 的函数为: f ( t ) = ( t − 3 ) 2 + 1 f(t) = (t-3)^2 + 1 f(t)=(t3)2+1

步骤4:计算 ( t − 3 ) 2 + 1 (t-3)^2 + 1 (t3)2+1 ,得: f ( t ) = t 2 − 6 t + 10 f(t) = t^2 - 6t + 10 f(t)=t26t+10

步骤5:把 t t t 变回 x x x f ( x ) = x 2 − 6 x + 10 f(x) = x^2 - 6x + 10 f(x)=x26x+10

7. 映射


映射和函数的概念差不太多,都是表示两个集合之间存在对应的关系

函数是一种特殊的映射,通常两个数字集合间有对应关系叫做函数,非数字集合间有对应关系叫做映射

数据的来源在函数中叫做定义域,在映射中叫做原象,源数据所对应的集合在函数中叫做值域,在映射中叫做象

当,A 集合是原象,B 集合是象,记做 f : A → B f:A→B f:AB,读做 A 集合到 B 集合的映射

8. 函数的表示方法


常见的函数表示方法有:

  • 列表法:通过表格表示 x 和 y 的对应关系
  • 图像法:通过平面直角坐标系表示 x 和 y 的对应关系
  • 解析法:用解析式表示 x 和 y 的对应关系

9. 分段函数


分段函数是在一个函数中,有多个解析式,然后根据不同的条件使用不同的解析式

例:

f ( x ) = { x + 1 , x > 0 1 − x , x ≤ 0 f(x) = \begin{cases} x + 1,x \gt 0 \\ 1 - x,x \leq 0 \end{cases} f(x)={x+1x>01xx0 ,求 f ( 3 ) + f ( − 1 ) f(3) + f(-1) f(3)+f(1)

解:

这个函数中,有两个解析式,分别对应 x > 0 x \gt 0 x>0 时的表达式 和 x ≤ 0 x \leq 0 x0 时的表达式

因为 3 > 0 3 \gt 0 3>0,所以 f ( 3 ) f(3) f(3) 应该用 x + 1 x + 1 x+1 这个解析式,既 f ( 3 ) = 3 + 1 = 4 f(3) = 3 + 1 = 4 f(3)=3+1=4

因为 − 1 ≤ 0 -1 \leq 0 10,所以 f ( − 1 ) f(-1) f(1) 应该用 1 − x 1 - x 1x 这个解析式,既 f ( − 1 ) = 1 − ( − 1 ) = 2 f(-1) = 1 - (-1) = 2 f(1)=1(1)=2

因为 f ( 3 ) = 4 , f ( − 1 ) = 2 f(3) = 4,f(-1) = 2 f(3)=4f(1)=2,所以 f ( 3 ) + f ( − 1 ) = 6 f(3) + f(-1) = 6 f(3)+f(1)=6

注意,带绝对值的函数,也是分段函数。如 f ( x ) = ∣ x ∣ ( x + 1 ) f(x) = \vert x \vert (x + 1) f(x)=x(x+1) ,就是一个分段函数,当 x ≥ 0 x \geq 0 x0 时,解析式为 x ( x + 1 ) x(x + 1) x(x+1),当 x < 0 x \lt 0 x<0 时,解析式为 − x ( x + 1 ) -x(x + 1) x(x+1)

10. 抽象函数图像的平移


与一次、二次、反比例函数图像平移的口诀一样,也是:上加下减在末尾,左加右减在 x x x

抽象函数 y = f ( 2 x + 1 ) y = f(2x + 1) y=f(2x+1) 平移,例:

左移五个单位 y = f ( 2 ( x + 5 ) + 1 ) y = f(2(x + 5) + 1) y=f(2(x+5)+1)

右移五个单位 y = f ( 2 ( x − 5 ) + 1 ) y = f(2(x - 5) + 1) y=f(2(x5)+1)

上移五个单位 y = f ( 2 x + 1 ) + 5 y = f(2x + 1) + 5 y=f(2x+1)+5

下移五个单位 y = f ( 2 x + 1 ) − 5 y = f(2x + 1) - 5 y=f(2x+1)5

11. 函数的周期性


周期性从函数图像上来说,是一个有循环规律的图像,当 x x x 每增长特定长度后, y y y 就会回到最初的点开始新的一轮循环,这种函数就具备周期性

函数的周期

x x x 每增长特定的距离, y y y 就会开始新的一轮循环, 这个特定的距离就是函数的周期

f ( x ) = f ( x + t ) f(x)=f(x + t) f(x)=f(x+t) 时,当 x x x 增长了 t t t 个距离后, y y y 的值与最初的值相等,说明这个函数具有周期性,而 t t t 就是这个函数的周期

从具有周期性的函数中找到周期的常见题型

(1) f ( x ) = f ( x + t ) f(x)=f(x + t) f(x)=f(x+t) :从 x x x 向左移动了 t t t 个距离后, y y y 开始新的循环,所以周期是 t t t

(2) f ( x ) = f ( x − t ) f(x)=f(x - t) f(x)=f(xt):从 x x x 向右移动了 t t t 个距离后, y y y 开始新的循环,所以周期是 t t t

(3) f ( x − a ) = f ( x + a ) f(x - a)=f(x + a) f(xa)=f(x+a):从数轴上看, − a -a a + a +a +a 的距离是 2 a 2a 2a,所以周期是 2 a 2a 2a

(4) f ( x + a ) = − f ( x ) f(x + a)=-f(x) f(x+a)=f(x) :周期是 2 a 2a 2a

原理:

f ( x + a ) = − f ( x ) f(x + a)=-f(x) f(x+a)=f(x),等号左右两边相差一个 a a a,只要保持这个规律,就可以对已有的信息进行改造,将已有信息改为: f ( x + 2 a ) = − f ( x + a ) f(x + 2a)=-f(x + a) f(x+2a)=f(x+a),左右两边仍然相差一个 a a a,规律不变。因为原式中 f ( x + a ) = − f ( x ) f(x + a)=-f(x) f(x+a)=f(x),所以可以将改造后的 f ( x + 2 a ) = − f ( x + a ) f(x + 2a)=-f(x + a) f(x+2a)=f(x+a) 中的 f ( x + a ) f(x + a) f(x+a) 变成 − f ( x ) -f(x) f(x),即: f ( x + 2 a ) = − [ − f ( x ) ] f(x + 2a)=-[-f(x)] f(x+2a)=[f(x)],化简后: f ( x + 2 a ) = f ( x ) f(x + 2a)=f(x) f(x+2a)=f(x),从化简后的等式就可以看出周期是 2a

(5) f ( x + a ) = 1 f ( x ) f(x + a)=\frac {1}{f(x)} f(x+a)=f(x)1 的周期是 2 a 2a 2a

原理,跟上一个思路差不多:

保证等号两遍相差一个 a a a 的规律,将原式改造为 f ( x + 2 a ) = 1 f ( x + a ) f(x + 2a)=\frac {1}{f(x + a)} f(x+2a)=f(x+a)1,然后将改造后的分母 f ( x + a ) f(x + a) f(x+a), 变成原式中的 1 f ( x ) \frac {1}{f(x)} f(x)1,这时改造后的式子为 f ( x + 2 a ) = 1 1 f ( x ) f(x + 2a)=\frac {1}{\frac {1} {f(x)}} f(x+2a)=f(x)11,化简后: f ( x + 2 a ) = f ( x ) f(x + 2a)=f(x) f(x+2a)=f(x),从化简后的等式就可以看出周期是 2a


二、函数的单调性

1. 单调性的代数定义


在函数图像中,某一区间的图像如果是持续向上的,叫单调递增,如果持续向下,叫单调递减,如果是持平叫没有单调性

单调递增的代数定义

在函数图像的 x x x 轴任取两个点,当 x 1 < x 2 x_1 \lt x_2 x1<x2,并且 f ( x 1 ) < f ( x 2 ) f(x_1) \lt f(x_2) f(x1)<f(x2) f ( x 1 ) − f ( x 2 ) < 0 f(x_1) - f(x_2) \lt 0 f(x1)f(x2)<0 时,是单调递增

单调递减的代数定义

在函数图像的 x x x 轴任取两个点,当 x 1 < x 2 x_1 \lt x_2 x1<x2,并且 f ( x 1 ) > f ( x 2 ) f(x_1) \gt f(x_2) f(x1)>f(x2) f ( x 1 ) − f ( x 2 ) > 0 f(x_1) - f(x_2) \gt 0 f(x1)f(x2)>0 时,是单调递减

2. 一次、二次、反比例函数的单调性


一次函数

一次函数图像

一次函数 y = k x + b y = kx + b y=kx+b 的单调性由系数 k k k 决定,当 k > 0 k \gt 0 k>0 时,图像是单调递增的,当 k < 0 k \lt 0 k<0 时,图像是单调递减的

二次函数

二次函数图像

二次函数 y = a x 2 + b x + c y = ax^2 + bx +c y=ax2+bx+c 的图像是抛物线,抛物线的开口由 a a a 决定:

  • a > 0 a \gt 0 a>0 时,抛物线开口向上,对称轴左侧图像为单调递减, x x x 取值区间为 ( − ∞ , − b 2 a -\infty,-\frac {b} {2a} 2ab],对称轴右侧图像为单调递增, x x x 取值区间为 [ − b 2 a , + ∞ -\frac {b} {2a},+\infty 2ab+)

  • a < 0 a \lt 0 a<0 时,抛物线开口向下,对称轴左侧图像为单调递增, x x x 取值区间为 ( − ∞ , − b 2 a -\infty,-\frac {b} {2a} 2ab],对称轴右侧图像为单调递减, x x x 取值区间为 [ − b 2 a , + ∞ -\frac {b} {2a},+\infty 2ab+)

反比例函数

反比例函数图像

反比例函数 y = k x y = \frac k x y=xk 的单调性也是由系数 k k k 决定:

  • k > 0 k \gt 0 k>0 时,图像在第一、三象限是单调递减的, x x x 在第一象限的区间是 ( 0 , + ∞ ) (0, +\infty) (0,+),在第三象限的区间是 ( − ∞ , 0 ) (-\infty, 0) (,0)
  • k < 0 k \lt 0 k<0 时,图像在第二、四象限是单调递增的, x x x 在第二象限的区间是 ( 0 , + ∞ ) (0, +\infty) (0,+),在第四象限的区间是 ( − ∞ , 0 ) (-\infty, 0) (,0)

3. 单调性的加减


两个单调递增的函数相加,结果还是单调递增。两个单调递减的函数相加,结果还是单调递减。

所以口诀就是:增加增还是增,减加减还是减

4. 复合函数概念


一个函数的参数是另一个函数,这种组合的函数就是复合函数,其形式为 y = f ( g ( x ) ) y = f(g(x)) y=f(g(x)),其由两个函数组成,分别是函数 f f f,叫做外层函数、函数 g g g,叫做内层函数,其执行流程是由内向外,先执行 g ( x ) g(x) g(x) ,将其计算后的结果当做参数,再执行 f f f

给定外层和内层函数,组成复合函数

内层函数: u = g ( x ) = x 2 − x u = g(x) = x^2 - x u=g(x)=x2x
外层函数: y = f ( u ) = 1 u y = f(u) = \frac 1 u y=f(u)=u1
组成的复合函数: f ( g ( x ) ) = 1 x 2 − x f(g(x)) = \frac {1} {x^2 - x} f(g(x))=x2x1

给定复合函数,拆解成内层和外层函数

复合函数: f ( g ( x ) ) = x 2 + 1 f(g(x))=\sqrt {x^2 + 1} f(g(x))=x2+1
拆解的内层函数: u = g ( x ) = x 2 + 1 u = g(x) = x^2 + 1 u=g(x)=x2+1
拆解的外层函数: y = f ( u ) = u y = f(u) = \sqrt u y=f(u)=u

5. 复合函数的单调性


求解复合函数单调性的流程:

  1. 求出复合函数的定义域
  2. 求出外层函数的单调性(外层函数的单调性是恒不变的,要么单调递增,要么单调递减)
  3. 求出内层函数的单调性
  4. 求出复合函数的单调性,利用口诀:同增异减(内层函数与外层函数的单调性做比较,当内层函数和外层函数的单调性相同时,复合函数是单调递增,当内层函数和外层函数的单调性异同时,复合函数是单调递减)

例:求 y = x 2 − 2 x y = \sqrt {x^2 - 2x} y=x22x 的单调区间?

解:

步骤1,求出复合函数的定义域:

因为 x 2 − 2 x x^2 - 2x x22x 在根式下,所以 x 2 − 2 x ≥ 0 x^2 - 2x \geq 0 x22x0,计算后得定义域: ( − ∞ , 0 ] (-\infty, 0] (,0] [ 2 , + ∞ ) [2, +\infty) [2,+)

步骤2,因为 y = x 2 − 2 x y = \sqrt {x^2 - 2x} y=x22x 中含有根式,所以适合将其看做复合函数,然后拆解出内外函数:

内层函数为: u = g ( x ) = x 2 − 2 x u = g(x) = x^2 - 2x u=g(x)=x22x,外层函数为: y = f ( u ) = u y = f(u) = \sqrt u y=f(u)=u

步骤3,求出外层函数的单调性:

因为根号下的数越大,开根后值越大,所以外层函数是单调递增的

步骤4,求出内层函数的单调性:

内层函数是一个开口向上的二次函数,因为二次函数是抛物线,所以其会以对称轴为分界线有两个单调区间,对称轴左边是单调递减区间、对称轴右边是单调递增区间,通过 (对称轴 = − b 2 a ) (对称轴 = - \frac {b} {2a}) (对称轴=2ab 计算出对称轴是 1 1 1,也就是这个二次函数中 ( − ∞ , 1 ] (-\infty, 1] (,1] 是单调递减, [ 1 , + ∞ ) [1, +\infty) [1,+) 是单调递增。又因为定义域已经求出来是 ( − ∞ , 0 ] (-\infty, 0] (,0] [ 2 , + ∞ ) [2, +\infty) [2,+) ,不包含 1 1 1,所以单调区间也不应该包含 1 1 1,调整后最终内层函数的单调递减的区间应该是 ( − ∞ , 0 ] (-\infty, 0] (,0],单调递增的区间是 [ 2 , + ∞ ) [2, +\infty) [2,+)

步骤5,根据同增异减求出复合函数的单调性:

外层函数是单调递增,内层函数中 ( − ∞ , 1 ] (-\infty, 1] (,1] 是单调递减,和外层不同,所以 ( − ∞ , 1 ] (-\infty, 1] (,1] 是单调递减,内层函数中 [ 2 , + ∞ ) [2, +\infty) [2,+) 是单调递增,与外层单调性相同,所以 [ 2 , + ∞ ) [2, +\infty) [2,+) 仍是单调递增,最后结论就是这个复合函数的单调区间为: ( − ∞ , 1 ] (-\infty, 1] (,1] 是单调递减 , [ 2 , + ∞ ) [2, +\infty) [2,+) 是单调递增

6. 对勾函数概念


对勾函数的标准式为: y = a x + b x y=ax+\frac b x y=ax+xb 并且 a , b > 0 a,b \gt 0 ab>0,因为其表现在函数图像上时,像 ✓,所以称为对勾函数

对勾函数图像

用最简单的对勾函数 y = x + 1 x y=x + \frac 1 x y=x+x1 来理解其形成 ✓ 图像的原理:

x x x 分别取值为: 1 4 \frac 1 4 41 1 3 \frac 1 3 31 1 2 \frac 1 2 21 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5,所对应的 y y y 分别是: 4 1 4 4\frac 1 4 441 3 1 3 3\frac 1 3 331 2 1 2 2\frac 1 2 221 2 2 2 2 1 2 2\frac 1 2 221 3 1 3 3\frac 1 3 331 4 1 4 4\frac 1 4 441 5 1 5 5\frac 1 5 551,在第一象限画出来就是一个 ✓,如果 x x x 的定义域可以是负数,那么第三象限会有一个相反的 ✓

通过上面的试验可以找到规律,图像会从最高处开始单调递减,当 x x x 1 x \frac 1 x x1 相等时( x = 1 x=1 x=1)是临界值,之后会变成单调递增

7. 对勾函数单调性和均值不等式


均值不等式

均值不等式定理:当 a , b > 0 a, b > 0 a,b>0 时, a + b ≥ 2 a b a + b \geq 2 \sqrt {ab} a+b2ab ,证明其原理很简单:

a + b ≥ 2 a b = a − 2 a b + b ≥ 0 = ( a − b ) 2 ≥ 0 a + b \geq 2 \sqrt ab=a - 2 \sqrt ab + b \geq 0= (\sqrt a - \sqrt b)^2 \geq 0 a+b2a b=a2a b+b0=(a b )20

想让 ( a − b ) 2 = 0 (\sqrt a - \sqrt b)^2 = 0 (a b )2=0,只要满足 a = b a = b a=b 即可

对勾函数单调性

对勾函数和二次函数同样是拥有两个单调性,二次函数可以通过对称轴找到临界点,从而找到单调递增和单调递减的区间,而对勾函数不一定是对称的,所以不能使用对称轴来找临界点,对勾函数的标准式是: y = a x + b x ,且 a , b > 0 y=ax+\frac b x,且 a,b \gt 0 y=ax+xb,且a,b>0,这种结构刚好满足均值不等式,而通过前一个章节的试验,可以得出临界点是 a x = b x ax = \frac b x ax=xb,刚好是均值不等式 ( a − b ) 2 = 0 (\sqrt a - \sqrt b)^2 = 0 (a b )2=0 时的值

套用均值不等式求对勾函数临界点

a x + b x ≥ 2 a x ∗ b x = a x + b x ≥ 2 a b = a x − 2 a b + b x ≥ 0 = ( a x − b x ) 2 ≥ 0 ax + \frac b x \geq 2 \sqrt {{ax} *{\frac b x}}=ax + \frac b x \geq 2 \sqrt {ab}=ax-2\sqrt {ab} + \frac b x \geq 0=(ax-\frac b x)^2\geq 0 ax+xb2axxb =ax+xb2ab =ax2ab +xb0=(axxb)20

因为 a x = b x ax = \frac b x ax=xb 时是临界点,既:

a ∗ x = b ∗ 1 x = x ∗ x = b ∗ 1 a = x 2 = b a = x = b a a*x=b*\frac 1x\\ =x*x=b*\frac 1 a\\ =x^2=\frac b a\\ =x=\sqrt {\frac b a} ax=bx1=xx=ba1=x2=ab=x=ab

通过临界点得到对勾函数的单调区间为:

  • 第一象限的递增区间为:[ a b \sqrt \frac ab ba , + ∞ +\infty +)
  • 第一象限的递减区间为:(0, a b \sqrt \frac ab ba ]
  • 第三象限的递增区间为:( − ∞ -\infty , - a b \sqrt \frac ab ba ]
  • 第三象限的递减区间为:[- a b \sqrt \frac ab ba , 0)

8. 分式的单调性


求解分式的单调性,主要就是利用常数分离法

例:

f ( x ) = 2 x + 1 x − 1 f(x)=\frac {2x + 1} {x - 1} f(x)=x12x+1 的单调区间

解:

步骤1,分离常数:

f ( x ) = 2 x + 1 x − 1 = 2 ( x − 1 ) + 3 x − 1 = 2 ( x − 1 ) x − 1 + 3 x − 1 = 2 + 3 x − 1 f(x)=\frac {2x + 1} {x - 1} = \frac {2(x - 1) + 3} {x - 1}=\frac {2(x - 1)}{x - 1} + \frac {3}{x - 1}=2+\frac {3}{x -1} f(x)=x12x+1=x12(x1)+3=x12(x1)+x13=2+x13

步骤2,找到单调区间:

常数分离后得: 2 + 3 x − 1 2+\frac {3}{x -1} 2+x13,其是一个在函数图像上向右移动 1 位,向上移动 2 位的反比例函数,所以是单调递减函数,在第一象限和第三象限的单调递减区间分别是 [ 1 , + ∞ 1, +\infty 1,+) 和 ( − ∞ , 1 -\infty, 1 ,1]

9. 抽象函数单调性


求抽象函数的单调性,是利用单调性的代数式,即:取两个点,让其满足 x 1 < x 2 x_1 \lt x_2 x1<x2,这时如果 f ( x 1 ) − f ( x 2 ) < 0 f(x_1) - f(x_2) \lt 0 f(x1)f(x2)<0,则是单调递增,如果 f ( x 1 ) − f ( x 2 ) > 0 f(x_1) - f(x_2) \gt 0 f(x1)f(x2)>0 则是单调递减

抽象函数单调性常见的题型,例:

∀ x \forall x x y ∈ R y \in R yR f ( x ) + f ( y ) = f ( x + y ) f(x) + f(y) = f(x + y) f(x)+f(y)=f(x+y) x < 0 x \lt 0 x<0 时, f ( x ) < 0 f(x) \lt 0 f(x)<0,求证: f ( x ) f(x) f(x) R R R 上单调递增

解:

步骤1,让题中等式满足单调性的代数式结构,即 f ( x 1 ) − f ( x 2 ) f(x_1) - f(x_2) f(x1)f(x2)

题中 f ( x ) + f ( y ) = f ( x + y ) f(x) + f(y) = f(x + y) f(x)+f(y)=f(x+y),可以通过移项变成: f ( x + y ) − f ( x ) = f ( y ) f(x + y) - f(x) = f(y) f(x+y)f(x)=f(y),满足单调性代数式结构

步骤2,任取两点,让其满足 x 1 < x 2 x_1 \lt x_2 x1<x2,然后换元代入:

设: x 1 = x + y x_1 = x + y x1=x+y x 2 = x x_2 = x x2=x

通过换元法将 f ( x + y ) − f ( x ) = f ( y ) f(x + y) - f(x) = f(y) f(x+y)f(x)=f(y) 变为 f ( x 1 ) − f ( x 2 ) = f ( x 1 − x 2 ) f(x_1) - f(x_2) = f(x_1 - x_2) f(x1)f(x2)=f(x1x2)

步骤3,计算 f ( x 1 − x 2 ) f(x_1 - x_2) f(x1x2)

因为 x 1 < x 2 x_1 \lt x_2 x1<x2,所以 x 1 − x 2 < 0 x_1 - x_2 < 0 x1x2<0,又因为题中说 x < 0 x \lt 0 x<0 时, f ( x ) < 0 f(x) \lt 0 f(x)<0,所以 f ( x 1 − x 2 ) < 0 f(x_1 - x_2) \lt 0 f(x1x2)<0

步骤4,整理后得出结论:

因为 f ( x 1 ) − f ( x 2 ) < 0 f(x_1) - f(x_2) \lt 0 f(x1)f(x2)<0,所以 f ( x ) f(x) f(x) 是单调递增

10. 单调性与不等式


这种题型也是利用了单调性代数式,例:

已知 f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0+) 上的减函数, f ( m 2 − 1 ) > f ( m + 5 ) f(m^2 - 1) \gt f(m + 5) f(m21)>f(m+5), 求 m m m 的范围

解:

步骤1,通过单调性代数式分析题目:

因为减函数的单调性代数式为 x 1 < x 2 x_1 \lt x_2 x1<x2 并且 f ( x 1 ) > f ( x 2 ) f(x_1) \gt f(x_2) f(x1)>f(x2),所以 m 2 − 1 < m + 5 m^2 - 1 \lt m + 5 m21<m+5

步骤2,解不等式方程 m 2 − 1 < m + 5 m^2 - 1 \lt m + 5 m21<m+5

m 2 − 1 < m + 5 = m 2 − m − 6 < 0 = ( m − 3 ) ( m + 2 ) < 0 = − 2 < m < 3 m^2 - 1 \lt m + 5\\ =m^2-m-6<0\\ =(m-3)(m+2)<0\\ =-2 \lt m \lt 3 m21<m+5=m2m6<0=(m3)(m+2)<0=2<m<3

步骤3,验证 m m m 是否为正确答案:

题中给出, f ( x ) f(x) f(x) 的定义域是 ( 0 , + ∞ ) (0,+\infty) (0+),所以 m 2 − 1 m^2 - 1 m21 m + 5 m + 5 m+5 必须都大于 0,所以 − 2 < m < 3 -2 \lt m \lt 3 2<m<3 不行,还需要求出 m 2 − 1 > 0 m^2 - 1 > 0 m21>0 m + 5 > 0 m + 5 > 0 m+5>0

现在有三个条件:
{ − 2 < m < 3 m 2 − 1 > 0 = m < − 1 或 1 < m m + 5 > 0 = m > − 5 \begin {cases} -2 \lt m \lt 3\\ m^2 - 1 > 0 = m \lt -1 或 1\lt m\\ m + 5 > 0 = m>-5 \end{cases} 2<m<3m21>0=m<11<mm+5>0=m>5

最后取数轴上的交集为: − 2 < m < − 1 -2 \lt m \lt -1 2<m<1 1 < m < 3 1 \lt m \lt 3 1<m<3

三、函数的奇偶性

1. 奇偶性的概念


判断奇偶性,就是判断对 f ( x ) f(x) f(x) 分别传入正数和负数后的结果关系:

  • 当传入正数和负数后的结果互为相反数时,代表 f ( x ) f(x) f(x) 是奇函数,即: f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x)

  • 当传入正数和负数后的结果相等时,代表 f ( x ) f(x) f(x) 是偶函数,即: f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x)

除了上述判断奇偶性的条件外,奇函数和偶函数的定义域必须满足原点对称的条件,否则就是一个非奇非偶函数

还有,奇函数的值是基于原点对称的,偶函数的值是基于 y y y 轴对称的

奇函数,例:

判断 f ( x ) = 3 x 3 f(x)=3x^3 f(x)=3x3 是否为奇函数?(假设定义域原点对称)

因为 f ( 1 ) = 3 f(1)=3 f(1)=3 f ( − 1 ) = − 3 f(-1) = -3 f(1)=3,它们的值互为相反数,所以 f ( x ) = 3 x 3 f(x)=3x^3 f(x)=3x3 是奇函数

偶函数,例:

判断 f ( x ) = ∣ x ∣ + 1 f(x)=\vert x \vert + 1 f(x)=x+1 是否为偶函数?(假设定义域原点对称)

因为 f ( 1 ) = 2 f(1)=2 f(1)=2 f ( − 1 ) = 2 f(-1)=2 f(1)=2,它们的值相同,所以 f ( x ) = ∣ x ∣ + 1 f(x)=\vert x \vert + 1 f(x)=x+1 是偶函数

关于 f ( x ) f(x) f(x) f ( − x ) f(-x) f(x) 的总结:

刚开始一直以为 f ( − x ) f(-x) f(x) 是一个函数,纠结很久, 后来听从一个数学高手的指点,才转过弯

f ( − x ) f(-x) f(x) 仅仅是把 − x -x x 代进 f ( x ) f(x) f(x) 函数而已,并不是一个新的函数,就和代入一个数字同理

比如有函数 f ( x ) = 3 x 3 f(x) = 3x^3 f(x)=3x3,那么代入 − x -x x 和 代入一个数字是同样的道理:

  • f ( 1 ) = 3 ∗ 1 3 = 3 f(1)=3*1^3=3 f(1)=313=3
  • f ( 2 ) = 3 ∗ 2 3 = 24 f(2)=3*2^3=24 f(2)=323=24
  • f ( − 2 ) = 3 ∗ ( − 2 ) 3 = − 24 f(-2)=3*(-2)^3=-24 f(2)=3(2)3=24
  • f ( − x ) = 3 ∗ ( − x ) 3 = − 3 x 3 f(-x)=3*(-x)^3=-3x^3 f(x)=3(x)3=3x3

2. 奇偶性的运算和复合函数的奇偶性


奇偶性的运算

  • 奇函数 + 奇函数 = 奇函数

  • 奇函数 * 奇函数 = 偶函数

  • 偶函数 + 偶函数 = 偶函数

  • 偶函数 * 偶函数 = 偶函数

  • 奇函数 * 偶函数 = 奇函数

  • 奇函数 + 偶函数 = 不能确定

原理,以加法为例:

假设 f ( x ) , g ( x ) f(x),g(x) f(x)g(x) 都是奇函数:

令: − x = x -x = x x=x

则: f ( x ) + g ( x ) = f ( − x ) + g ( − x ) f(x)+g(x) = f(-x) + g(-x) f(x)+g(x)=f(x)+g(x)

因为奇函数有 f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x) 的特性

所以 f ( − x ) + g ( − x ) = − f ( x ) + [ − g ( x ) ] = − f ( x ) − g ( x ) = − [ f ( x ) + g ( x ) ] f(-x) + g(-x)=-f(x) + [-g(x)]=-f(x)-g(x)=-[f(x) + g(x)] f(x)+g(x)=f(x)+[g(x)]=f(x)g(x)=[f(x)+g(x)]

原式为: f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x), 结果为: − [ f ( x ) + g ( x ) ] -[f(x) + g(x)] [f(x)+g(x)],结果与原式互为相反数,所以是奇函数

复合函数的奇偶性

假设有复合函数: F ( x ) = f ( g ( x ) ) F(x) = f(g(x)) F(x)=f(g(x))

  • f(x) 是奇函数,g(x) 也是奇函数时,复合函数 F(x) 是奇函数

  • f(x) 是奇函数,g(x) 也是偶函数时,复合函数 F(x) 是偶函数

  • f(x) 是偶函数,g(x) 也是偶函数时,复合函数 F(x) 是偶函数

  • f(x) 是偶函数,g(x) 也是奇函数时,复合函数 F(x) 是偶函数

原理,以 f(x) 是奇函数,g(x) 也是奇函数时,复合函数 F(x) 是奇函数为例:

令: − x = x -x = x x=x

则: f ( g ( x ) ) = f ( g ( − x ) ) f(g(x)) = f(g(-x)) f(g(x))=f(g(x))

因为 g ( x ) g(x) g(x) 是奇函数,奇函数特性为: g ( − x ) = − g ( x ) g(-x) = -g(x) g(x)=g(x)

所以 f ( g ( − x ) ) = f ( − g ( x ) ) f(g(-x))=f(-g(x)) f(g(x))=f(g(x))

因为 f ( x ) f(x) f(x) 是奇函数,奇函数特性为: f ( − x ) = − f ( x ) f(-x) = -f(x) f(x)=f(x)

所以 f ( − g ( x ) ) = − f ( g ( x ) ) f(-g(x))=-f(g(x)) f(g(x))=f(g(x))

原式为: f ( g ( x ) ) f(g(x)) f(g(x)), 转换后结果为: − f ( g ( x ) ) -f(g(x)) f(g(x)),结果与原式互为相反数,所以是奇函数


3. 分段函数的奇偶性


判断分段函数的奇偶性,只需要把 − x -x x 代入到解析式后与原解析式对比即可,当所有解析式都是奇函数,那么分段函数就是奇函数,当所有解析式都是偶函数,那么分段函数就是偶函数,当解析式有奇函数也有偶函数,那么分段函数就是非奇非偶函数

不要忘记,分段函数一定要满足定义域原点对称

例,判断以下分段函数的奇偶性:

{ x 2 + 2 x − 3 , x < 0 − x 2 + 2 x + 3 , x > 0 \begin{cases}\\ x^2 + 2x - 3,x \lt 0\\ -x^2 + 2x + 3,x \gt 0 \end{cases} x2+2x3x<0x2+2x+3x>0

解:

步骤1,因为分段函数的定义域是全部实数,所以定义域是基于原点对称的,所以可以继续判断奇偶性

步骤2,把 − x -x x 代入到解析式 (分段条件中的 x x x 也要替换)

{ ( − x ) 2 + 2 ( − x ) − 3 , − x < 0 − ( − x ) 2 + 2 ( − x ) + 3 , − x > 0 \begin{cases}\\ (-x)^2 + 2(-x) - 3,-x \lt 0\\ -(-x)^2 + 2(-x) + 3,-x \gt 0 \end{cases} (x)2+2(x)3x<0(x)2+2(x)+3x>0 化简后得: { x 2 − 2 x − 3 , x > 0 − x 2 − 2 x + 3 , x < 0 \begin{cases}\\ x^2 - 2x - 3,x \gt 0\\ -x^2 - 2x + 3,x \lt 0 \end{cases} x22x3x>0x22x+3x<0

步骤3,化简后与条件相同的原解析式对比:

化简后的 x > 0 x \gt 0 x>0 的解析式为 x 2 − 2 x − 3 x^2 - 2x - 3 x22x3,原解析式中 x > 0 x \gt 0 x>0 的解析式为 − x 2 + 2 x + 3 -x^2 + 2x + 3 x2+2x+3,两个解析式不相等,说明不是偶函数,接下来再对原解析式取相反数,判断是否为奇函数,原解析始取相反数后为: − ( − x 2 + 2 x + 3 ) = x 2 − 2 x − 3 -(-x^2 + 2x + 3)=x^2-2x-3 (x2+2x+3)=x22x3,原解析式取相反数后与化简后的相同,说明 x > 0 x \gt 0 x>0 时的解析式是奇函数

化简后的 x < 0 x \lt 0 x<0 的解析式为 − x 2 − 2 x + 3 -x^2 - 2x + 3 x22x+3,原解析式中 x < 0 x \lt 0 x<0 的解析式为 x 2 + 2 x − 3 x^2 + 2x - 3 x2+2x3,两个解析式不相等,说明不是偶函数,接下来再对原解析式取相反数,判断是否为奇函数,原解析始取相反数后为: − ( x 2 + 2 x − 3 ) = − x 2 − 2 x + 3 -(x^2 + 2x - 3)=-x^2-2x+3 (x2+2x3)=x22x+3,原解析式取相反数后与化简后的相同,说明 x < 0 x \lt 0 x<0 时的解析式是奇函数

所有解析式都是奇函数,所以这个分段函数就是奇函数

这种替换的方式要注意的点

当分段函数解析式的条件有临界值时,比如 ≤ \leq ≥ \geq 时,要再原解析式的基础上,先将临界值拎出来,然后再正常替换判断奇偶性

例,下面这个带有临界值的原解析式:

{ x 2 + 2 x − 3 , x ≤ 1 − x 2 + 2 x + 3 , x > 1 \begin{cases}\\ x^2 + 2x - 3,x \leq 1\\ -x^2 + 2x + 3,x \gt 1 \end{cases} x2+2x3x1x2+2x+3x>1

解:

步骤1,因为分段函数的定义域是全部实数,所以定义域是基于原点对称的,所以可以继续判断奇偶性

步骤2,因为有临界值 x ≤ 1 x \leq 1 x1, 所以要对原解析式进行改造,把 x = 1 x=1 x=1 的情况拎出来,之后(条件中的 ≤ \leq 就可以变为 < \lt < 了):

{ x 2 + 2 x − 3 , x ≤ 1 − x 2 + 2 x + 3 , x > 1 \begin{cases}\\ x^2 + 2x - 3,x \leq 1\\ -x^2 + 2x + 3,x \gt 1 \end{cases} x2+2x3x1x2+2x+3x>1 变为 { x 2 + 2 x − 3 , x < 1 x 2 + 2 x − 3 , x = 1 − x 2 + 2 x + 3 , x > 1 \begin{cases}\\ x^2 + 2x - 3,x \lt 1\\ x^2 + 2x - 3,x = 1\\ -x^2 + 2x + 3,x \gt 1 \end{cases} x2+2x3x<1x2+2x3x=1x2+2x+3x>1

步骤3,按照正常步骤,判断新解析式的奇偶性即可

4. 利用奇偶性求函数值


就是利用函数奇偶性各自的特点求值,注意的是,当奇函数 x x x 为零时,值就是 0 0 0,也就是 f ( 0 ) = 0 f(0) = 0 f(0)=0

(1) 偶函数求值,例:

f ( x ) f(x) f(x) 是定义在 R R R 上的偶函数,当 x ≤ 0 x \leq 0 x0 时, f ( x ) = x 2 − x + 4 f(x) = x^2 - x + 4 f(x)=x2x+4,求 f ( 2 ) f(2) f(2) ?

因为题中给的是 x ≤ 0 x \leq 0 x0 时的解析式,而 2 > 0 2 \gt 0 2>0,就相当于是一个 − x -x x,所以只要直接把 − 2 -2 2 代入即可: f ( − 2 ) = ( − 2 ) 2 − ( − 2 ) + 4 f(-2)=(-2)^2 - (-2) + 4 f(2)=(2)2(2)+4,化简后得: 4 + 2 + 4 = 10 4 + 2 + 4 = 10 4+2+4=10

(2) 奇函数求值,例:

f ( x ) f(x) f(x) 是定义在 R R R 上的奇函数,当 x < 0 x \lt 0 x<0 时, f ( x ) = x 2 − x + 4 f(x) = x^2 - x + 4 f(x)=x2x+4,求 f ( 0 ) f(0) f(0) ?

奇函数时, f ( 0 ) = 0 f(0)=0 f(0)=0,所以值就是 0 0 0

5. 利用奇偶性求解析式


与利用奇偶性求函数值一样,利用奇偶性求解析式也是通过函数奇偶性各自特点的去推导

(1) 偶函数,例:

已知 f ( x ) f(x) f(x) R R R 上的偶函数,当 x < 0 x \lt 0 x<0 时, f ( x ) = − 2 x 2 + 3 x + 1 f(x)=-2x^2 + 3x + 1 f(x)=2x2+3x+1,则当 x > 0 x \gt 0 x>0 时,求 f ( x ) f(x) f(x)

解:

因为题目中给出 x < 0 x \lt 0 x<0 时的 f ( x ) f(x) f(x),所以 x > 0 x \gt 0 x>0,就是 f ( − x ) f(-x) f(x)

− x -x x 代入: f ( − x ) = − 2 ∗ ( − x ) 2 + 3 ∗ ( − x ) + 1 = − 2 x 2 − 3 x + 1 f(-x)=-2*(-x)^2+3*(-x)+1=-2x^2-3x+1 f(x)=2(x)2+3(x)+1=2x23x+1

因为题目要求 x > 0 x \gt 0 x>0 时的 f ( x ) f(x) f(x),而我们现在得到的是 x > 0 x \gt 0 x>0 时的 f ( − x ) f(-x) f(x),所以我们需要进行转换,因为 f ( x ) f(x) f(x)是偶函数, f ( x ) = f ( − x ) f(x)=f(-x) f(x)=f(x),所以 f ( x ) = − 2 x 2 − 3 x + 1 f(x)=-2x^2-3x+1 f(x)=2x23x+1


(2) 奇函数,例:

x < 0 x \lt 0 x<0 时, f ( x ) = − 2 x 2 + 3 x + 1 f(x)=-2x^2 + 3x + 1 f(x)=2x2+3x+1,则当 x ≥ 0 x \geq 0 x0 时,求 f ( x ) f(x) f(x)

解:

x ≥ 0 x \geq 0 x0 f ( x ) f(x) f(x) 的解析式,要分为两种情况

情况1:当 x = 0 x = 0 x=0 时, f ( x ) = 0 f(x) = 0 f(x)=0

情况2:当 x > 0 x \gt 0 x>0 时,因为题目中给出 x < 0 x \lt 0 x<0 时的 f ( x ) f(x) f(x),所以 x > 0 x \gt 0 x>0,就是 f ( − x ) f(-x) f(x)

− x -x x 代入: f ( − x ) = − 2 ∗ ( − x ) 2 + 3 ∗ ( − x ) + 1 = − 2 x 2 − 3 x + 1 f(-x)=-2*(-x)^2+3*(-x)+1=-2x^2-3x+1 f(x)=2(x)2+3(x)+1=2x23x+1

因为题目要求 x > 0 x \gt 0 x>0 时的 f ( x ) f(x) f(x),而我们现在得到的是 x > 0 x \gt 0 x>0 时的 f ( − x ) f(-x) f(x),所以我们需要进行转换,因为 f ( x ) f(x) f(x)是奇函数, − f ( x ) = f ( − x ) -f(x)=f(-x) f(x)=f(x),所以 f ( x ) = − [ − 2 x 2 − 3 x + 1 ] = 2 x 2 + 3 x − 1 f(x)=-[-2x^2-3x+1]=2x^2+3x-1 f(x)=[2x23x+1]=2x2+3x1


6. 判断抽象函数的奇偶性


解题方式就是在题目已有的线索中,努力拼凑出 f ( x ) f(x) f(x) f ( − x ) f(-x) f(x)

(1) 已知 f ( x ) f(x) f(x) x ∈ R x \in R xR,若对任意 f ( x ) + f ( y ) = f ( x + y ) f(x) + f(y)=f(x + y) f(x)+f(y)=f(x+y),求 f ( x ) f(x) f(x) 的奇偶性。

解:

步骤1:令: y = − x y = -x y=x

步骤2,将 y = − x y = -x y=x 代入到 f ( x ) + f ( y ) = f ( x + y ) f(x) + f(y)=f(x + y) f(x)+f(y)=f(x+y) 中:

即: f ( x ) + f ( − x ) = f ( x − x ) f(x) + f(-x)=f(x - x) f(x)+f(x)=f(xx) ,化简后 f ( x ) + f ( − x ) = f ( 0 ) f(x) + f(-x)=f(0) f(x)+f(x)=f(0),这样就凑出 f ( x ) f(x) f(x) f ( − x ) f(-x) f(x) 的关系式了,但是想知道具体的关系,还需要知道 f ( 0 ) f(0) f(0) 的值

步骤3,令: x = 0 , y = 0 x = 0, y = 0 x=0,y=0,求出 f ( 0 ) f(0) f(0) 的值:

因为不知道函数的奇偶性,所以不能利用奇函数 f ( 0 ) = 0 f(0) = 0 f(0)=0 来确定 f ( 0 ) f(0) f(0) 的值,所以要把 x 和 y 都当做 0 求出 f ( 0 ) f(0) f(0) 的值,即: f ( 0 ) + f ( 0 ) = f ( 0 ) f(0) + f(0) = f(0) f(0)+f(0)=f(0),移项后: f ( 0 ) = f ( 0 ) − f ( 0 ) f(0)=f(0) - f(0) f(0)=f(0)f(0),所以 f ( 0 ) = 0 f(0)=0 f(0)=0

步骤4,结论:

已知 f ( x ) + f ( − x ) = 0 f(x) + f(-x)=0 f(x)+f(x)=0,即: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),所以这是一个奇函数

(2) 已知 f ( x ) f(x) f(x) x ∈ R x \in R xR,若对任意 f ( y + x ) + f ( y − x ) = 2 f ( x ) ∗ f ( y ) f(y + x) + f(y - x)=2f(x) * f(y) f(y+x)+f(yx)=2f(x)f(y),且 f ( 0 ) ≠ 0 f(0) \neq 0 f(0)=0,求 f ( x ) f(x) f(x) 的奇偶性。

解:

步骤1:令: y = 0 y = 0 y=0

步骤2,将 y = 0 y = 0 y=0 代入到 f ( y + x ) + f ( y − x ) = 2 f ( x ) ∗ f ( y ) f(y + x) + f(y - x)=2f(x) * f(y) f(y+x)+f(yx)=2f(x)f(y) 中:

即: f ( x ) + f ( − x ) = 2 f ( x ) ∗ f ( 0 ) f(x) + f(-x)=2f(x) * f(0) f(x)+f(x)=2f(x)f(0) ,这样就凑出 f ( x ) f(x) f(x) f ( − x ) f(-x) f(x) 的关系式了,但是想知道具体的关系,还需要知道 f ( 0 ) f(0) f(0) 的值


步骤3,令: x = 0 , y = 0 x = 0, y = 0 x=0,y=0,求出 f ( 0 ) f(0) f(0) 的值:

x = 0 , y = 0 x = 0, y = 0 x=0,y=0 代入到题目中,即: f ( 0 ) + f ( 0 ) = 2 f ( 0 ) ∗ f ( 0 ) f(0) + f(0) = 2f(0) * f(0) f(0)+f(0)=2f(0)f(0),整理后得: 2 f ( 0 ) = 2 ( f 0 ) 2 2f(0)=2(f0)^2 2f(0)=2(f0)2,因为是等式,所以 f ( 0 ) = ( f 0 ) 2 f(0)=(f0)^2 f(0)=(f0)2,而题目中说 f ( 0 ) ≠ 0 f(0) \neq 0 f(0)=0,所以 f ( 0 ) = 1 f(0) = 1 f(0)=1

步骤4,结论:

已知 f ( x ) + f ( − x ) = 2 f ( x ) ∗ 1 f(x) + f(-x)=2f(x) * 1 f(x)+f(x)=2f(x)1,即: f ( x ) + f ( − x ) = 2 f ( x ) f(x) + f(-x) = 2f(x) f(x)+f(x)=2f(x),移项后得: f ( − x ) = 2 f ( x ) − f ( x ) f(-x) = 2f(x) - f(x) f(x)=2f(x)f(x),即 f ( − x ) = f ( x ) f(-x) = f(x) f(x)=f(x),所以这是一个偶函数

7. 根据奇偶性求参数值


已知函数 f ( x ) = a + 2 x f(x) = a + 2x f(x)=a+2x 是奇函数,那 a = ? a=? a=?

解:

步骤1,分析定义域是否可以为 0 0 0

通过解析式可以看出出定义域可以为 0 0 0

步骤2,因为定义域可以为 0 0 0,那么就利用常奇函数 f ( 0 ) = 0 f(0) = 0 f(0)=0 的特点:

即: f ( 0 ) = 0 f(0) = 0 f(0)=0,即: 0 = a + 2 x 0 = a + 2x 0=a+2x,所以 a = 0 a = 0 a=0

已知函数 f ( x ) = ( x + 2 ) ( x + a ) x f(x) = \frac {(x+2)(x+a)} {x} f(x)=x(x+2)(x+a) 是奇函数,那 a = ? a=? a=?

解:

步骤1,分析定义域是否可以为 0 0 0

通过解析式可以分析出定义域不能是 0 0 0

步骤2,因为定义域不能为 0 0 0,那么就将最简单的常数 1 1 1 − 1 -1 1 代入到 f ( x ) f(x) f(x) 中:

f ( 1 ) = ( 1 + 2 ) ( 1 + a ) 1 = 3 + 3 a f(1) = \frac {(1+2)(1+a)} {1}= 3+3a f(1)=1(1+2)(1+a)=3+3a
f ( − 1 ) = ( − 1 + 2 ) ( − 1 + a ) − 1 = 1 − a f(-1) = \frac {(-1+2)(-1+a)} {-1}=1-a f(1)=1(1+2)(1+a)=1a

步骤3,利用奇函数中 − f ( x ) = f ( − x ) -f(x) = f(-x) f(x)=f(x) 的特点求出 a a a

− ( 3 + 3 a ) = 1 − a -(3+3a)=1-a (3+3a)=1a 计算后, a = − 2 a = -2 a=2

  • 13
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值