考研数二要掌握的高中知识点(二)


一、函数的零点

1. 函数的零点概念


(1) 零点是 f ( x ) = 0 f(x)=0 f(x)=0 x x x 的值,即 f ( x ) f(x) f(x) x x x 轴交点的横坐标,可能一个都没有,也可能是多个

例:

f ( x ) = 2 x − 6 f(x)=2x-6 f(x)=2x6 的零点?

解:

0 = 2 x − 6 0=2x - 6 0=2x6,所以 x = 3。但是零点不能说成 x = 3 x=3 x=3,应该说成零点是 3 3 3

(2) 如何确定是否有零点: 首先必须是一个连续性的函数,然后 x x x 分别取值为定义域的两端,然后代入到 f ( x ) f(x) f(x) 中,如果结果是一正一负,就可以判断这个函数有零点,如果两个负或者两个正,都不能确定这个函数有零点

例:

函数 f ( x ) = 2 x 3 − x 2 + 4 x + − 4 f(x)=2x^3-x^2+4x+-4 f(x)=2x3x2+4x+4,它的零点在哪个区间?
A : [ − 1 , 0 ] A:[-1, 0] A:[1,0] B : [ 0 , 1 ] B:[0, 1] B:[0,1] C : [ 1 , 2 ] C:[1, 2] C:[1,2] D : [ 2 , 3 ] D:[2, 3] D:[2,3]

解:

直接取定义域两端的值,然后代入求值就可以,当结果是一正一负时,就是包含零点的区间

先试答案 A A A,分别代入 f ( − 1 ) = − 11 f(-1)=-11 f(1)=11 f ( 0 ) = − 4 f(0)=-4 f(0)=4,结果是两个负,所以不行
再试答案 B B B,分别代入 f ( 0 ) = − 4 f(0)=-4 f(0)=4 f ( 1 ) = 1 f(1)=1 f(1)=1,结果是一正一负,所以答案是 B B B

二、指数函数

1. 根式


x n = a x^n = a xn=a,那么 x x x 就是 a a a n n n 次根,如果能够明确 n n n 的奇偶,也可以读作 x x x a a a 的奇次方根、或 x x x a a a 的偶次方根。

a n \sqrt [n] a na ,这个叫做 a a a n n n 次算术根,在 n n n 是偶数时,要注意算术根这个概念。

a \sqrt a a 这个叫做 a a a 的算术平方根,等同于 a a a 2 2 2 次算数根 a 2 \sqrt [2] a 2a


n n n 是偶数时:

  • a < 0 a \lt 0 a<0, a 没有根,因为这个式子本来就没意义
  • a = 0 a = 0 a=0 时, a a a 只有一个根,就是 0
  • a > 0 a \gt 0 a>0 时, a a a 有两个根,分别为 a n \sqrt [n] a na − a n -\sqrt [n] a na 如果题中是求 a 的 n 次根,这个时候 a a a 是有两个根的,分别是 a n \sqrt [n] a na − a n -\sqrt [n] a na ,这两个叫做 a a a 的根。如果题中是求 a n \sqrt [n] a na ,这时候其实只要求出 a n \sqrt [n] a na 就可以,这个叫做算术根,千万千万不要弄混,例如: 如果题目是求 9 9 9 2 2 2 次根,那么 9 有两个根,分别是 9 2 \sqrt [2] 9 29 − 9 2 -\sqrt [2] 9 29 , 结果是 ± 3 \pm 3 ±3。如果题目是求 9 2 \sqrt [2] 9 29 ,这时候让求的不是 9 的根,而是 9 的算术根,结果就是 3

n n n 是奇数时:

  • a a a 可以是任意数,并且 a a a 只有一个根,同时也是算术根,就是 a n \sqrt [n] a na

算数根的互逆口诀:

(1) ( a n ) n = a (\sqrt [n] a)^n = a (na )n=a:先求 a a a n n n 次算术根,然后再乘 n n n 次方,值还是 a a a

(2) a n n \sqrt [n] {a^n} nan :先对 a a a n n n 次方,再求 n n n 次算术根。这个算式的值,根据 a a a 的奇偶会有变化,当 a a a 是奇数时,结果还是 a a a,当 a a a 是偶数时,值是 ∣ a ∣ \vert a \vert a

2. 指数


按照指数的正负区分:

  • 指数为 0 0 0:除 0 0 0 外,任何数的 0 0 0 次方 都是 1 1 1 0 0 0 0 0 0 次方是 0 0 0 (底数为零时,无意义)
    例: 5 0 = 1 5^0 = 1 50=1 − 10 0 0 = 1 -100^0 = 1 1000=1

  • 指数为正整数时:指数是几,就代表底数相乘几次,公式为: a n = a ∗ a ∗ a . . . n 次 a^n=a * a*a...n次 an=aaa...n
    例: 2 3 = 2 ∗ 2 ∗ 2 = 8 2^3 = 2*2*2=8 23=222=8 − 5 2 = − 5 ∗ − 5 = 25 -5^2 = -5*-5 = 25 52=55=25

  • 指数为正分数时:要先对底数开算数根,然后再乘方。开算数根的次数为指数的分母,乘方的次数为指数的分子,公式为: a n m = ( a m ) n a^{\frac n m} = (\sqrt [m] a)^n amn=(ma )n
    例: 4 1 2 = ( 4 2 ) 1 = 2 4^{\frac 1 2}=(\sqrt [2] 4)^1=2 421=(24 )1=2 8 2 3 = ( 8 3 ) 2 = 4 8^{\frac 2 3}=(\sqrt [3] 8)^2=4 832=(38 )2=4

  • 指数为负数时:值为正数时的倒数,公式: a − m = 1 a m a^{-m} = \frac {1} {a^m} am=am1 a − n m = 1 a n m a^{-\frac n m}=\frac {1} {a^{\frac n m}} amn=amn1
    例: 4 − 2 = 1 4 2 = 1 16 4^{-2}=\frac {1} {4^2} = \frac {1} {16} 42=421=161 − 2 − 3 = − 1 2 3 = − 1 8 -2^{-3} =-\frac{1} {2^3} = -\frac 1 8 23=231=81 4 − 1 2 = 1 4 1 2 = 1 ( 4 2 ) 1 = 1 2 4^{-\frac 1 2}=\frac {1}{4^{\frac {1}{2}}} = \frac {1} {(\sqrt [2] 4)^1}=\frac 1 2 421=4211=(24 )11=21

3. 指数的运算


回顾一下初中时指数的运算:

  • a m ∗ a n = a m + n a^m * a^n = a^{m+n} aman=am+n

  • ( a m ) n = a m ∗ n (a^m)^n= a^{m*n} (am)n=amn

  • ( a b ) n = a n ∗ b n = a n b n (ab)^n=a^n * b^n = a^nb^n (ab)n=anbn=anbn

  • a m ÷ a n = a m − n a^m \div a^n = a^{m-n} am÷an=amn

高中时的指数运算,依旧如此,只不过初中时指数都是整数,而高中指数可以是任意数

复杂的指数运算

( − 3 x 1 4 y − 1 3 ) ( 4 x − 1 2 y 2 3 ) ÷ ( − 2 x − 1 3 y 1 2 ) (-3x^{\frac 14}y^{-\frac 1 3})(4x^{-\frac 1 2}y^{\frac 2 3})\div(-2x^{-\frac 1 3}y^{\frac 12}) (3x41y31)(4x21y32)÷(2x31y21)

解:

步骤1:算常数: − 3 ∗ 4 ÷ − 2 = 6 -3 * 4 \div -2 = 6 34÷2=6

步骤2:分别算同字母的指数,先算字母 x x x 的指数: x 1 4 ∗ x − 1 2 ÷ x − 1 3 = x 1 4 + ( − 1 2 ) − ( − 1 3 ) = x 1 12 x^{\frac 14} * x^{-\frac 1 2}\div x^{-\frac 1 3}=x^{\frac 1 4 + (-\frac 1 2) - (- \frac 1 3)}=x^{\frac {1} {12}} x41x21÷x31=x41+(21)(31)=x121

再算字母 y y y 的指数: y − 1 3 ∗ y 2 3 ÷ y 1 2 = y − 1 3 + 2 3 − 1 2 = y − 1 6 y^{-\frac 1 3} * y^{\frac 2 3}\div y^{\frac 1 2}=y^{-\frac 1 3 + \frac 2 3 - \frac 1 2}=y^{-\frac 1 6} y31y32÷y21=y31+3221=y61

步骤3:将常数和字母整合: 6 x 1 12 y − 1 6 6x^{\frac {1} {12}}y{-\frac 1 6} 6x121y61


4. 指数函数的概念


指数函数的定义: y = a x y = a^x y=ax,并且系数只能是 1 1 1,底数 a > 0 a \gt 0 a>0 a ≠ 1 a \ne 1 a=1,指数必须是 x x x

1. 指数函数的性质:

指数函数的图像:
指数函数图像

  • 定义域为 R R R,值域为 ( 0 , + ∞ ) (0,+\infty) (0+)
  • a > 1 a \gt 1 a>1 时,是单调递增函数。当 0 < a < 1 0 \lt a \lt 1 0<a<1 时,是单调递减函数
  • 非奇非偶函数

例:

f ( x ) = ( a 2 − 5 a + 5 ) ∗ a x f(x)=(a^2 - 5a + 5) * a^x f(x)=(a25a+5)ax 是指数函数,求 a a a ?

解:

因为指数函数的系数只能是 1 1 1,所以 a 2 − 5 a + 5 = 1 a^2 - 5a + 5 = 1 a25a+5=1,解出 a = 1 a=1 a=1 a = 4 a=4 a=4,又因为指数函数底数不能是 1 1 1,所以 a = 4 a=4 a=4

2. 负指数时真正的底数:

y = a − x y = a^{-x} y=ax 时,切记底数不是 a a a,而是要将负指数化简为 ( 1 a ) x (\frac 1 a)^x (a1)x,即底数是 1 a \frac 1 a a1


3. 指数函数 a x a^x ax a − x a^{-x} ax 的函数图像关于 y y y 轴对称,也可以记为: a x a^x ax ( 1 a ) x (\frac {1} {a})^x (a1)x 关于 y y y 轴对称

可以对 x x x 取值 − 4 、 − 3 、 − 2 、 2 、 3 、 4 -4、-3、-2、2、3、4 432234,然后看两个函数对应的函数图像

4. 根据指数函数图像,比较底数大小

在第一象限做一条竖线穿过所有要比较的图像,图像越高,底数越大,称为底大图高

5. 指数函数的定点


指数函数的公式为: f ( x ) = a x f(x)=a^x f(x)=ax,定点的意思是:当指数为 0 0 0 时, x x x y y y 的值

例:

f ( x ) = a 0 f(x)=a^0 f(x)=a0 定点为: ( 0 , 1 ) (0, 1) (0,1)

f ( x ) = a x − 2 + 1 f(x)=a^{x-2} + 1 f(x)=ax2+1想让 a 0 a^0 a0 就得让 x = 2 x = 2 x=2,所以定点为: ( 2 , 2 ) (2, 2) (2,2)

三、对数函数


1. 对数概念


幂运算

先回顾一下幂运算: a n = N a^n=N an=N,其中 a a a 是底数, n n n 是指数, N N N 是真数,读作 a a a n n n 次方是 N N N

例:幂运算 2 3 = 8 2^3=8 23=8,其中 2 2 2 是底数, 3 3 3 是指数, 8 8 8 是真数。意为: 2 2 2 3 3 3 次方是 8 8 8

对数运算

对数是幂的逆运算,在已知真数和底数的条件下,求指数的过程就是对数运算。其记做: log ⁡ a N = n \log_{a} {N}=n logaN=n,其中 a a a 是底数, N N N 是真数, n n n 是指数

例:对数运算 log ⁡ 5 25 = 2 \log_{5}{25}=2 log525=2,其中 5 5 5 是底数, 25 25 25 是真数, 2 2 2 是指数。意为: 25 25 25 5 5 5 2 2 2 次方

对数有两个恒等式要记住:

  • log ⁡ a ( a ) n = n \log_{a}{(a)^n}=n loga(a)n=n,例: log ⁡ 2 ( 2 ) 3 = 3 \log_{2}{(2)^3}=3 log2(2)3=3

  • a log ⁡ a n = n a^{\log_{a}{n}} = n alogan=n,例: 2 log ⁡ 2 8 = 8 2^{\log_{2}{8}} = 8 2log28=8

两种特殊对数的写法

  • 常用对数:即底数是 10 10 10 时,可以简写为: lg ⁡ N \lg {N} lgN。例: log ⁡ 10 100 \log_{10} {100} log10100 可以简写为 lg ⁡ 100 \lg {100} lg100
  • 自然对数:即底数是 e e e 时,可以简写为: ln ⁡ N \ln {N} lnN。例: log ⁡ e 5 \log_{e} {5} loge5 可以简写为 ln ⁡ 5 \ln {5} ln5

2. 对数底数和真数的范围


对数记做: log ⁡ a N = n \log_{a} {N}=n logaN=n,其中 a > 0 a \gt 0 a>0 a ≠ 1 a \neq 1 a=1 N > 0 N \gt 0 N>0

例 1:

已知 log ⁡ a 9 = 2 \log_{a} {9} = 2 loga9=2,求 a a a

解:

题中给了真数和指数,需要我们算出底数,即: 9 2 = ± 3 \sqrt[2] {9} = \pm 3 29 =±3,因为底数必须大于 0 0 0 且 不等于 1 1 1,所以 a = 3 a = 3 a=3

例 2:

对数式 log ⁡ 2 ( x − 1 ) = 2 \log_{2} {(x-1)} = 2 log2(x1)=2,求 x x x 的取值范围

解:

因为真数大于0,所以 x − 1 > 0 x-1\gt0 x1>0,即 x > 1 x \gt 1 x>1

3. 对数的运算律(加、减、倍数)


对数求和公式: log ⁡ a M + log ⁡ a N = log ⁡ a ( M N ) \log_{a}{M} + \log_{a}{N} = \log_{a}{(MN)} logaM+logaN=loga(MN),例: log ⁡ 2 3 + log ⁡ a 5 = log ⁡ a 15 \log_{2}{3} + \log_{a}{5} = \log_{a}{15} log23+loga5=loga15

对数求差公式: log ⁡ a M − log ⁡ a N = log ⁡ a ( M N ) \log_{a}{M} - \log_{a}{N} = \log_{a}{(\frac {M} {N})} logaMlogaN=loga(NM),例: log ⁡ 2 6 − log ⁡ 2 5 = log ⁡ a 6 5 \log_{2}{6} - \log_{2}{5} = \log_{a}{\frac {6} {5}} log26log25=loga56

对数倍数公式: n log ⁡ a M = log ⁡ a ( M ) n n\log_{a}{M} = \log_{a}{(M)^n} nlogaM=loga(M)n,例: 3 log ⁡ 2 5 = log ⁡ a ( 5 ) 3 3\log_{2}{5} = \log_{a}{(5)^3} 3log25=loga(5)3

例 1, 2 log ⁡ 5 10 + log ⁡ 5 0.25 2\log_{5}{10} + \log_{5}{0.25} 2log510+log50.25

解:

和普通运算一样,要先算乘法,即: 2 log ⁡ 5 10 = log ⁡ 5 ( 10 ) 2 = log ⁡ 5 100 2\log_{5}{10}=\log_{5}{(10)^2}=\log_{5}{100} 2log510=log5(10)2=log5100

此时算式为: log ⁡ 5 100 + log ⁡ 5 0.25 = log ⁡ 5 100 ∗ 0.25 = log ⁡ 5 25 \log_{5}{100} + \log_{5}{0.25}=\log_{5}{100*0.25}=\log_{5}{25} log5100+log50.25=log51000.25=log525

例 2,已知 log ⁡ a x = 0.7 \log_{a}{x} = 0.7 logax=0.7 log ⁡ a y = 2 \log_{a}{y}=2 logay=2,求 log ⁡ a ( x y ) = ? \log_{a}{(xy)} = ? loga(xy)=?

解:按照对数运算律可知: log ⁡ a ( x y ) = log ⁡ a x + log ⁡ a y \log_{a}{(xy)} = \log_{a}{x} + \log_{a}{y} loga(xy)=logax+logay,而 log ⁡ a x \log_{a}{x} logax log ⁡ a y \log_{a}{y} logay 已给值,可直接代入: 0.7 + 2 = 2.7 0.7+2=2.7 0.7+2=2.7

对数求和公式: log ⁡ a M + log ⁡ a N = log ⁡ a ( M N ) \log_{a}{M} + \log_{a}{N} = \log_{a}{(MN)} logaM+logaN=loga(MN),的证明:

设: a log ⁡ a M + log ⁡ a N a^{\log_{a}{M}+{\log_{a}{N}}} alogaM+logaN,即: a log ⁡ a M + log ⁡ a N = a log ⁡ a M ∗ a log ⁡ a N a^{\log_{a}{M}+{\log_{a}{N}}} = a^{\log_{a}{M}} * a^{\log_{a}{N}} alogaM+logaN=alogaMalogaN

∵ 对数恒等式: a log ⁡ a n = n , ∴ a log ⁡ a M = M \because 对数恒等式:a^{\log_{a}{n}} = n,\therefore a^{\log_{a}{M}} = M 对数恒等式:alogan=nalogaM=M a log ⁡ a N = N a^{\log_{a}{N}} = N alogaN=N

∴ a log ⁡ a M + log ⁡ a N = M ∗ N \therefore a^{\log_{a}{M}+{\log_{a}{N}}} = M*N alogaM+logaN=MN

再次利用对数恒等式将 M ∗ N M*N MN 换成以 a a a 为底的对数形式,值不变: M ∗ N → a log ⁡ a ( M ∗ N ) M*N → a^{\log_{a}{(M*N)}} MNaloga(MN)

将变换后的 M ∗ N M*N MN 代回等式,即: a log ⁡ a M + log ⁡ a N = a log ⁡ a ( M ∗ N ) a^{\log_{a}{M}+{\log_{a}{N}}} = a^{\log_{a}{(M*N)}} alogaM+logaN=aloga(MN)

∵ 等号两边的底数相同,所以可以消掉 \because 等号两边的底数相同,所以可以消掉 等号两边的底数相同,所以可以消掉,即: log ⁡ a M + log ⁡ a N = log ⁡ a ( M ∗ N ) \log_{a}{M}+{\log_{a}{N}} = \log_{a}{(M*N)} logaM+logaN=loga(MN)

4. 对数的乘法(换底公式)


换底公式

对数的乘法,需要借助换底公式

换底公式: log ⁡ a b = log ⁡ c b log ⁡ c a \log_{a}{b} = \frac {\log_{c}{b}} {\log_{c}{a}} logab=logcalogcb

因为变换时,把底数换成了 c c c 所以叫换底公式, c c c 可以是任意的满足对数底数要求的数,即: c > 0 c \gt 0 c>0 c ≠ 1 c \neq 1 c=1,因为对数常数 10 10 10 写起来比较简单,所以一般将 c c c 换成 10 10 10,既 log ⁡ a b = lg ⁡ b lg ⁡ a \log_{a}{b} = \frac {\lg {b}} {\lg {a}} logab=lgalgb

公式的证明:

令: log ⁡ a b = x \log_{a}{b} = x logab=x,即: a x = b a^x=b ax=b

a x = b a^x=b ax=b 的等式两边同时进行对数运算,也就是换底,随便用一个满足对数底数要求的数就可以,这里用 2 2 2,对数运算为: log ⁡ 2 ( a ) x = log ⁡ 2 b \log_{2}{(a)^x}=\log_{2}{b} log2(a)x=log2b

通过上一章节的倍数公式可以知道, log ⁡ 2 ( a ) x \log_{2}{(a)^x} log2(a)x 可以变换为 x log ⁡ 2 a x\log_{2}{a} xlog2a,变换后将 x log ⁡ 2 a x\log_{2}{a} xlog2a 代入 log ⁡ 2 ( a ) x = log ⁡ 2 b \log_{2}{(a)^x}=\log_{2}{b} log2(a)x=log2b

即: x log ⁡ 2 a = log ⁡ 2 b x\log_{2}{a}=\log_{2}{b} xlog2a=log2b,然后移项: x = log ⁡ c b log ⁡ c a x= \frac {\log_{c}{b}} {\log_{c}{a}} x=logcalogcb

因为第一步令: log ⁡ a b = x \log_{a}{b} = x logab=x,现在把 x x x 换回来,即: log ⁡ a b = log ⁡ c b log ⁡ c a \log_{a}{b} = \frac {\log_{c}{b}} {\log_{c}{a}} logab=logcalogcb

利用换底公式,计算对数乘法,例:

计算 log ⁡ 4 9 ∗ log ⁡ 3 8 \log_{4}{9} * \log_{3}{8} log49log38 的值?

解:

第一步,换底: lg ⁡ 9 lg ⁡ 4 ∗ l g 8 l g 3 \frac {\lg 9} {\lg 4} * \frac {lg 8}{lg 3} lg4lg9lg3lg8

第二步,利用对数倍数公式,将算式转换成可以约分的样子:

lg ⁡ ( 3 ) 2 lg ⁡ ( 2 ) 2 ∗ l g ( 2 ) 3 l g 3 = 2 ∗ lg ⁡ 3 2 ∗ lg ⁡ 2 ∗ 3 ∗ lg ⁡ 2 l g 3 = 3 \frac {\lg (3)^2} {\lg (2)^2} * \frac {lg (2)^3}{lg 3} = \frac {2 * \lg 3} {2 * \lg 2} * \frac {3 * \lg 2}{lg 3}=3 lg(2)2lg(3)2lg3lg(2)3=2lg22lg3lg33lg2=3

基于换底公式,推导的几个固定的乘法公式

  • log ⁡ a b ∗ log ⁡ b a = 1 \log_{a}{b} * \log_{b}{a}=1 logablogba=1
    证明: lg ⁡ b lg ⁡ a ∗ lg ⁡ a lg ⁡ b = 1 \frac {\lg b}{\lg a} * \frac {\lg a}{\lg b} = 1 lgalgblgblga=1

  • log ⁡ a b ∗ log ⁡ b c = log ⁡ a c \log_{a}{b} * \log_{b}{c}=\log_{a}{c} logablogbc=logac
    证明: lg ⁡ b lg ⁡ a ∗ lg ⁡ c lg ⁡ b = lg ⁡ c lg ⁡ a = log ⁡ a c \frac {\lg b}{\lg a} * \frac {\lg c}{\lg b} = \frac {\lg c}{\lg a}=\log_{a}{c} lgalgblgblgc=lgalgc=logac

  • log ⁡ a n b m = m n log ⁡ a b \log_{a^n}{b^m}=\frac m n \log_{a}{b} loganbm=nmlogab
    证明: log ⁡ a n b m = lg ⁡ a n lg ⁡ b m = n lg ⁡ a m lg ⁡ b = m n ∗ l g a l g b = m n log ⁡ a b \log_{a^n}{b^m}=\frac {\lg a^n}{\lg b^m} = \frac {n\lg a}{m\lg b}=\frac m n * \frac {lg a}{lg b}=\frac m n \log_{a}{b} loganbm=lgbmlgan=mlgbnlga=nmlgblga=nmlogab

5. 对数函数概念


对数函数标准式: f ( x ) = log ⁡ a x f(x)=\log_{a}{x} f(x)=logax,意为:根据真数 x x x 和底数 a a a 求指数,其中整个式子的系数必须为 1 1 1 x x x 的系数也必须是 1 1 1,底数 a > 0 a \gt 0 a>0 a ≠ 1 a \neq 1 a=1

1. 对数函数的性质:

对数函数的图像:

对数函数图像

  • 定义域: ( 0 , + ∞ ) (0, +\infty) (0,+)
  • a > 1 a \gt 1 a>1 时,是单调递增函数。当 0 < a < 1 0 \lt a \lt 1 0<a<1 时,是单调递减函数
  • 非奇非偶函数

例 1:

f ( x ) = ( a 2 − 5 a + 5 ) log ⁡ a x f(x)=(a^2-5a+5)\log_{a}{x} f(x)=(a25a+5)logax 是对数函数,求 a a a ?

解:

∵ 对数函数系数必须是 1 , ∴ a 2 − 5 a + 5 = 1 \because 对数函数系数必须是1,\therefore a^2-5a+5=1 对数函数系数必须是1a25a+5=1,即: a = 1 或 a = 4 a = 1 或 a = 4 a=1a=4

∵ 对数函数底数 a > 0 且 a ≠ 1 , ∴ a = 4 \because 对数函数底数 a \gt 0 且 a \neq 1,\therefore a=4 对数函数底数a>0a=1a=4

例 2:

对数函数 f ( x ) f(x) f(x) 的图像经过点 ( 4 , 2 ) (4, 2) (4,2) f ( x ) ?, f ( 8 ) ? f(x)?,f(8)? f(x)?,f(8)

解:

这种没有个对数函数具体解析式的,我们用标准式对已有点位进行代入: f ( x ) = log ⁡ a x f(x)=\log_{a}{x} f(x)=logax,即: 2 = log ⁡ a 4 2=\log_{a}{4} 2=loga4,所以 a = 2 a=2 a=2

∵ a = 2 , ∴ f ( x ) = log ⁡ 2 x , ∴ f ( 8 ) = log ⁡ 2 8 = 3 \because a=2,\therefore f(x)=\log_{2}{x},\therefore f(8)=\log_{2}{8}=3 a=2f(x)=log2xf(8)=log28=3

2. 对数函数 log ⁡ a x \log_{a}{x} logax log ⁡ 1 a x \log_{\frac 1 a}{x} loga1x 的函数图像关于 x x x 轴对称,也可以记为: log ⁡ a x \log_{a}{x} logax − log ⁡ a x -\log_{a}{x} logax 关于 x x x 轴对称

3. 根据对数函数图像,比较底数大小

在第一象限做一条横线穿过所有要比较的图像,图像越右,底数越大,称为底大图右

4. 同底数对数的真数比较:

  • a > 1 a \gt 1 a>1 时,是单调递增函数。 log ⁡ a N > log ⁡ a M ,则: N > M \log_{a}{N} \gt \log_{a}{M},则: N \gt M logaN>logaM,则:N>M

  • 0 < a < 1 0 \lt a \lt 1 0<a<1 时,是单调递减函数。 log ⁡ a N > log ⁡ a M ,则: N < M \log_{a}{N} \gt \log_{a}{M},则: N \lt M logaN>logaM,则:N<M

6. 对数函数的定点


对数函数的公式为: f ( x ) = log ⁡ a x f(x)=\log_{a}{x} f(x)=logax,定点的意思是:当真数是 1 1 1 时, x x x y y y 的值

例:

f ( x ) = log ⁡ 2 1 f(x)=\log_{2}{1} f(x)=log21 定点为: ( 1 , 0 ) (1, 0) (1,0)

f ( x ) = log ⁡ a ( x − 2 ) + 1 f(x)=\log_{a}{( x -2)} + 1 f(x)=loga(x2)+1想让真数为 1 1 1,就得让 x = 3 x = 3 x=3,所以定点为: ( 3 , 1 ) (3, 1) (3,1)

四、反函数


1. 反函数的概念


1. 反函数的概念

当两个函数满足值域是另一个函数的定义域时,两个函数间就具有互逆性,称它们互为反函数。

假设,下面两个函数互为反函数,那么它们一定满足 y 1 y_1 y1 的值域就是 x 2 x_2 x2 的定义域, y 2 y_2 y2 的值域就是 x 1 x_1 x1 的定义域,换句话说,只要求出 y 1 y_1 y1 就是求出了 x 2 x_2 x2,或者只要求出 y 2 y_2 y2 就是求出了 x 1 x_1 x1

{ y 1 = x 1 − 2 y 2 = 2 + x 2 \begin{cases} y_1 = x_1 - 2\\ y_2 = 2+x_2 \end{cases} {y1=x12y2=2+x2 3 3 3 x 1 x_1 x1 替换,验证是否满足理论,是否真的为反函数 { 1 = 3 − 2 3 = 2 + 1 \begin{cases} 1 = 3 - 2\\ 3 = 2+1 \end{cases} {1=323=2+1

通过代入常数试验发现两个函数的定义域和值域是可逆的,所以它们互为反函数

2. 求反函数

当已知一个函数,要求它的反函数时,可以利用上面 y 1 → x 2 y_1 → x_2 y1x2 y 2 → x 1 y_2 → x_1 y2x1 互逆的理论。

假设:已知函数 f ( x ) = x − 2 f(x) = x - 2 f(x)=x2,求其反函数。

解:

步骤1,为了方便起见,我们把 f ( x ) = x − 2 f(x)=x - 2 f(x)=x2 换成 x , y x,y xy 的形式,即: y = x − 2 y=x - 2 y=x2

步骤2,因为有 y 1 → x 2 y_1 → x_2 y1x2 y 2 → x 1 y_2 → x_1 y2x1 互逆的理论,所以只要求出 x x x,就是求出 y 2 y_2 y2

∵ y = x − 2 , ∴ x = 2 + y \because y=x - 2,\therefore x=2+y y=x2x=2+y

步骤3,其实上一步反函数就已经求出来了,但是一般习惯用 x x x 表示自变量,所以需要把 x = 2 + y x=2+y x=2+y 中的 y y y 替换成 x x x,即: x = 2 + x x=2+x x=2+x,然后再把其变为函数的样子,即: f ( x ) = 2 + x f(x)=2+x f(x)=2+x

总结一下,其实求反函数只需要三个步骤:

  1. 将解析式换位 x 、 y x、y xy 的形式
  2. 求出已知函数的 x x x,得到 x x x 即得 y 2 y_2 y2
  3. 检查求出的反函数解析式中是否存在自变量 y y y,如果有就把 y y y 换成 x x x,然后再把式子变成函数形式即可

3. 反函数的符号

反函数符号为 f − 1 f^{-1} f1,读作 F F F 逆。例: f − 1 ( x ) f^{-1}(x) f1(x) 读作 F F F ( x ) (x) (x),表达式意为:这是函数 f ( x ) f(x) f(x) 的反函数

4. 反函数(对数函数和指数函数)

当对数函数和指数函数间,也存在上文中 y 1 → x 2 y_1 → x_2 y1x2 y 2 → x 1 y_2 → x_1 y2x1 的关系时,它们就互为反函数,这时它们的函数图像关于 y = x y=x y=x 对称

例:

求出 f ( x ) = a x f(x) = a^x f(x)=ax 的反函数?

解,跟前面一样,分为三步:

步骤1,为了方便起见,我们把 f ( x ) = a x f(x)=a^x f(x)=ax 换成 x , y x,y xy 的形式,即: y = a x y=a^x y=ax

步骤2,因为有 y 1 → x 2 y_1 → x_2 y1x2 y 2 → x 1 y_2 → x_1 y2x1 互逆的理论,所以只要求出 x x x,就是求出 y 2 y_2 y2

因为有对数恒等式 log ⁡ a ( a ) n = n \log_{a}{(a)^n}=n loga(a)n=n 定理,所以对 y = a x y=a^x y=ax 的等号两边同时进行对数运算就可以得到 x x x
即: log ⁡ a y = log ⁡ a ( a ) x \log_{a}{y}=\log_{a}{(a)^x} logay=loga(a)x ∵ log ⁡ a ( a ) x = x , ∴ x = log ⁡ a y \because \log_{a}{(a)^x} = x,\therefore x = \log_{a}{y} loga(a)x=xx=logay

步骤3,将自变量 y y y 换成 x x x,再将式子变成函数的形式,即: f ( x ) = log ⁡ a x f(x)=\log_{a}{x} f(x)=logax


2. 判断反函数是否存在


判断 f ( x ) f(x) f(x) 有没有反函数,只需要判断 f ( x ) f(x) f(x) 的结果:一个 y y y 是否只对应一个 x x x

例: f ( x ) = x 2 f(x)=x^2 f(x)=x2 其结果 y y y 有两个根,即 y y y 对应两个 x x x,所以它没有反函数

例: f ( x ) = x 2 , ( x ≥ 1 ) f(x)=x^2,(x \geq 1) f(x)=x2(x1),其结果 y y y 只有一个根,即 y y y 只对应一个 x x x,所以它有反函数

五、幂函数


1. 幂函数的概念


幂函数公式: y = x a y=x^a y=xa,有三个特点:

  • 自变量是底数(这个是和指数函数区分的重要特征,指数函数的自变量是指数)
  • 系数必须为 1
  • 指数可以是任意实数,即: a ∈ R a\in R aR

下面几个都是幂函数例:

x 0 x^0 x0 x 1 x^1 x1 x 2 x^2 x2 x 1 2 x^{\frac 1 2} x21 1 x \frac 1 x x1 x \sqrt x x , 其中 1 x \frac 1 x x1 x \sqrt x x 也是幂函数,因为 1 x = x − 1 \frac 1 x = x^{-1} x1=x1 x = x 1 2 \sqrt x = x^{\frac 1 2} x =x21

2. 幂函数的定义域


幂函数定义域的三个规律:

  • 是否包含正数:所有幂函数的图像都会经过第一象限,所以所有幂函数的定义域都包含正数
  • 是否包含 0:通过幂函数的图像可以判断,当指数 a > 0 a \gt 0 a>0 时,定义域就包含 0 0 0。当 a ≤ 0 a \leq 0 a0 时,不包含 0 0 0
  • 是否包含负数:看指数的分母是否为偶数,指数的分母为偶数时,定义域就一定不包含负数,如: y = x 3 4 y = x^{\frac 3 4} y=x43

3. 幂函数的单调性


幂函数单调性的三个规律:

  • 指数为 0 0 0 时,没有单调性
  • 指数小于 0 0 0 时,单调递减
  • 指数大于 0 0 0 时,单调递增

4 幂函数的奇偶性


幂函数奇偶性的规律:

  • 指数的分母是偶数时,幂函数没有奇偶性,即,非奇非偶函数
  • 指数的分母是奇数时,分子也是奇数,幂函数为奇函数
  • 指数的分母是奇数时,分子是偶数,幂函数为偶函数

六、函数的凸性特征


所有图像为弧形的函数,都具备凸性特征,幂函数、指数函数、对数函数

凸指的就是弧形的方向,以二次函数为例,开口向上就是向下凸,开口向下就是向上凸

下凸函数的代数特征: f ( x 1 ) + f ( x 2 ) 2 > f ( x 1 + x 2 2 ) \frac {f(x_1) + f(x_2)}{2} \gt f(\frac {x_1+x_2}{2}) 2f(x1)+f(x2)>f(2x1+x2)

上凸函数的代数特征: f ( x 1 ) + f ( x 2 ) 2 < f ( x 1 + x 2 2 ) \frac {f(x_1) + f(x_2)}{2} \lt f(\frac {x_1+x_2}{2}) 2f(x1)+f(x2)<f(2x1+x2)

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值