过拟合产生原因及解决办法

过拟合表现:

训练集上效果很好,测试集上效果差

产生原因的根本原因

模型学习了一些噪音特征
1、模型复杂度高而数据集小,则模型很容易学习到一些非重要的特征
2、数据集噪音多,模型把噪音当成重要特征学习
3、训练集分布和测试集不同,训练集的数据没有涵盖各种情况

解决方法

数据增强:增加数据集

改进模型:

1、early stopping:当训练连续10个epoch时,精度不再有所提升,此时就可以停止迭代了
2、正则化:在损失函数添加l1或l2正则化
稀疏参数、更小参数:参数的稀疏,在一定程度实现了特征的选择,使网络更倾向于使用所有输入特征,而不是严重依赖输入特征中某些小部分特征。 L2惩罚倾向于更小更分散的权重向量,这就会鼓励分类器最终将所有维度上的特征都用起来,而不是强烈依赖其中少数几个维度。
3、dropout:随机丢掉一些神经元,通过修改隐藏层神经元的个数来防止网络的过拟合,因为是随机提出神经元且每次剔除的神经元个数都不同,消除减弱了神经元见的联合适应性,增强了神经网络的泛化能力和鲁棒性,dropout只在训练时使用,作为一个超参数,然而在测试集时,并不能使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值