交叉验证的几个方法的解释(简单交叉验证、k折交叉验证、留一法)

 

针对经验风险最小化算法的过拟合的问题,给出交叉验证的方法,这个方法在做分类问题时很常用:

一:简单的交叉验证的步骤如下:

1、 从全部的训练数据 S中随机选择 中随机选择 s的样例作为训练集 train,剩余的 作为测试集 作为测试集 test。

2、 通过对测试集训练 ,得到假设函数或者模型 。
3、 在测试集对每一个样本根据假设函数或者模型,得到训练集的类标,求出分类正确率。

4,选择具有最大分类率的模型或者假设。

这种方法称为 hold -out cross validation 或者称为简单交叉验证。由于测试集和训练集是分开的,就避免了过拟合的现象

 

二:k折交叉验证 k-fold cross validation

1、 将全部训练集 S分成 k个不相交的子集,假设 S中的训练样例个数为 m,那么每一个子 集有 m/k 个训练样例,,相应的子集称作 {s1,s2,…,sk}。
2、每次从分好的子集中里面,拿出一个作为测试集,其它k-1个作为训练集

3、根据训练训练出模型或者假设函数。
4、 把这个模型放到测试集上,得到分类率。

5、计算k次求得的分类率的平均值,作为该模型或者假设函数的真实分类率。

这个方法充分利用了所有样本。但计算比较繁琐,需要训练k次,测试k次。

 

三:留一法  leave-one-out cross validation

留一法就是每次只留下一个样本做测试集,其它样本做训练集,如果有k个样本,则需要训练k次,测试k次。

留一发计算最繁琐,但样本利用率最高。适合于小样本的情况。

 

 

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Python中sklearn库提供了K折交叉验证的功能。K折交叉验证是一种常见的模型评估方法,它将原始数据集分成K个子集,每个子集都尽可能地保持数据的平衡。然后,对于每个子集,我们都会单独地将它们作为测试集,其他K-1个子集作为训练集来进行模型训练和评估。最后,我们将K次训练结果的评估指标取均值作为最终的评估指标。 使用Python中sklearn库进行K折交叉验证的步骤如下: 1.导入所需的库: ```python from sklearn.model_selection import KFold ``` 2.将数据集分成K个子集: ```python kf = KFold(n_splits=K, shuffle=True, random_state=1) ``` - n_splits:表示要将数据集分成几个子集。 - shuffle:表示是否要对数据集进行随机打乱。 - random_state:表示随机数种子,用于控制随机打乱的结果。 3.使用K折交叉验证进行模型评估: ```python for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # 进行模型训练和评估 ``` - X:表示特征数据集。 - y:表示目标数据集。 - train_index:表示训练集的索引。 - test_index:表示测试集的索引。 在循环中,我们可以使用train_index和test_index来获取训练集和测试集的数据,并进行模型训练和评估。最后,将K次训练结果的评估指标取均值作为最终的评估指标。 ### 回答2: Python中的k折交叉验证是一种常用机器学习方法,用于评估模型的性能和选择最佳的超参数。它能够有效地利用有限的数据,防止过拟合,并提供模型的鲁棒性。 在Python中,我们可以使用scikit-learn库中的KFold类来实现k折交叉验证。KFold类用于将数据集划分为k个不重叠的子集,其中每个子集都具有相等数量的样本。然后,我们可以迭代训练和验证模型k次,每次使用不同的子集作为验证集,其余的子集作为训练集。 下面是使用scikit-learn进行k折交叉验证的一个简单示例: ``` from sklearn.model_selection import KFold from sklearn import datasets from sklearn import svm # 加载数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 创建k折交叉验证的实例 kfold = KFold(n_splits=5) # 迭代训练和验证模型 for train_index, test_index in kfold.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # 创建模型并进行训练 model = svm.SVC() model.fit(X_train, y_train) # 在验证集上进行预测并评估性能 accuracy = model.score(X_test, y_test) print("Accuracy:", accuracy) ``` 在以上示例中,我们使用了鸢尾花数据集,使用Support Vector Machine(SVM)分类器进行分类任务。我们将数据集划分为5个不重叠的子集,并使用每个子集作为验证集来评估模型的性能。每次迭代中,我们训练一个新的模型,并在验证集上进行预测,并计算准确性得分。最后,我们输出每次验证的准确性得分。根据得分,我们可以比较不同模型的性能,并选择最佳的超参数配置。 ### 回答3: K折交叉验证是一种常用机器学习模型评估方法,它可以帮助我们更准确地评估模型的性能,并有效避免过拟合问题。 在Python中,我们可以使用scikit-learn库中的KFold类来进行K折交叉验证。首先,我们需要导入相应的包和数据集,然后创建一个KFold对象,并指定K的值,即将数据集分成几个部分。 下面是一个使用KFold进行K折交叉验证的示例代码: ```python from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression # 导入数据集 X = ... y = ... # 创建KFold对象 kfold = KFold(n_splits=K, shuffle=True) # 定义分类器 model = LogisticRegression() scores = [] # 进行K折交叉验证 for train_idx, test_idx in kfold.split(X): # 划分训练集和测试集 X_train, X_test = X[train_idx], X[test_idx] y_train, y_test = y[train_idx], y[test_idx] # 训练模型 model.fit(X_train, y_train) # 在测试集上进行预测并计算准确率 score = model.score(X_test, y_test) scores.append(score) # 计算平均准确率 mean_score = sum(scores) / len(scores) ``` 在上述代码中,我们首先导入了KFold和LogisticRegression类。然后,我们创建了一个KFold对象,并通过n_splits参数指定了K的值。接下来,我们定义了一个LogisticRegression分类器作为我们的模型。在交叉验证的每一轮中,我们使用split方法划分训练集和测试集,并使用fit方法对模型进行训练。最后,我们使用score方法计算模型在测试集上的准确率,并将结果存储在一个列表中。最后,我们计算平均准确率,以评估模型的性能。 总之,使用Python中的scikit-learn库中的KFold类,我们可以方便地进行K折交叉验证,从而提高机器学习模型的评估准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值