原文链接
https://blog.csdn.net/nomadlx53/article/details/50849941
前提及说明
第一次遇见矩阵求导,大多数人都是一头雾水,而搜了维基百科看也还是云里雾里,一堆的名词和一堆的表格到底都是什么呢?这里总结了我个人的学习经验,并且通过一个例子可以让你感受如何进行矩阵求导,下次再遇到需要进行矩阵求导的地方就不会措手不及。
在进行概念的解说之前,首先大家需要先知道下面的这个前提:
前提: 若 xx 为向量,则默认 xx 为列向量, xTxT 为行向量
布局的概念
布局简单地理解就是分子 yy 、分母 xx 是行向量还是列向量。
- 分子布局(Numerator-layout): 分子为 yy 或者分母为 xTxT (即,分子为列向量或者分母为行向量)
- 分母布局(Denominator-layout): 分子为 yTyT 或者分母为 xx (即,分子为行向量或者分母为列向量)
为了更加深刻地理解两种布局的特点和区别,下面是从维基百科中布局部分拿来的例子:
分子布局
标量/向量: (分母的向量为行向量)
向量/标量: (分子的向量为列向量)
向量/向量: (分子为列向量横向平铺,分母为行向量纵向平铺)
标量/矩阵: (注意这个矩阵部分是转置的,而下面的分母布局是非转置的)
矩阵/标量:
分母布局
标量/向量: (分母的向量为列向量)
向量/标量: (分子的向量为行向量)
向量/向量: (分子为行向量纵向平铺,分母为列向量横向平铺)
标量/矩阵: (矩阵部分为原始矩阵)
一个求导的例子
问题,此问题为最小二乘的最优解
说明: y、wy、w为列向量,XX为矩阵
式子演化
看到这个例子不要急着去查表求导,先看看它的形式,是
u(w)∗v(w)的形式,这种形式一般求导较为复杂,因此为了简化运算,我们先把式子展开成下面的样子(注意:(Xw)T=wTXT(Xw)T=wTXT):
然后就可以写成四个部分求导的形式如下(累加后求导=求导后累加):
求导
- ∂yTy∂w∂yTy∂w求导 : ∂yTy∂w=0∂yTy∂w=0
说明:分子部分为标量,分母部分为向量,找到维基百科中的Scalar-by-vector identities表格,在表格中匹配形式到第1行的位置,因为分母为列向量,因此为分母布局,对应的求导结果就是 00 。
- ∂yTXw∂w∂yTXw∂w求导 : ∂yTXw∂w=XTy∂yTXw∂w=XTy
说明:同样的,在维基百科中的Scalar-by-vector identities表格,在表格中匹配形式到第11行的位置,对应的求导结果就是 XTyXTy 。
- ∂wTXTy∂w∂wTXTy∂w求导 : ∂wTXTy∂w=∂(wTXTy)T∂w=∂yTXw∂w=XTy∂wTXTy∂w=∂(wTXTy)T∂w=∂yTXw∂w=XTy
说明:因为分子为标量,标量的转置等于本身,所以对分子进行转置操作,其等价于第二部分。
- ∂wTXTXw∂w∂wTXTXw∂w求导 : ∂wTXTXw∂w=2XTXw∂wTXTXw∂w=2XTXw
说明:同样的,在维基百科中的Scalar-by-vector identities表格,在表格中匹配形式到第13行的位置,矩阵的转置乘上本身(XTXXTX)为对称矩阵当做表格中的AA ,所以得到求导结果 2XTXw2XTXw 。
整合
把四个部分求导结果进行相应的加减就可以得到最终的结果:
现在你再看看维基百科里那成堆的表格,是不是觉得异常实用了!