python之matplotlib.pyplot直方图

本文介绍了Python的matplotlib.pyplot库用于绘制直方图的方法,包括直方图的基本概念、参数说明,以及如何通过matplotlib.pyplot.hist函数创建直方图。直方图用于表示数据分布,通过设置不同参数可以定制直方图的样式和行为。
摘要由CSDN通过智能技术生成

matplotlib.pyplot直方图画起来还是分成方便的,思路还是准备好数据,然后设置参数即可。反正画直方图比折线图在EXCEL上方便太多了。

直方图介绍

直方图(Histogram)又称质量分布图。是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。
直方图是数值数据分布的精确图形表示。 这是一个连续变量(定量变量)的概率分布的估计,并且被卡尔·皮尔逊(Karl Pearson)首先引入。它是一种条形图。 为了构建直方图,第一步是将值的范围分段,即将整个值的范围分成一系列间隔,然后计算每个间隔中有多少值。 这些值通常被指定为连续的,不重叠的变量间隔。 间隔必须相邻,并且通常是(但不是必须的)相等的大小。

用直方图可以解析出资料的规则性,比较直观地看出产品质量特性的分布状态,对于资料分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉统计学的概念,首先要对资料进行分组,因此如何合理分组是其中的关键问题。按组距相等的原则进行的两个关键数位是分组数和组距。是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图

直方图参数说明

直方图是调用的matplotlib.pyplot.hist模块,不太清楚pyplot的可以参照前面的python之matplotlib.pyplot基础及折线图这篇文章

  • matplotlib.pyplot.hist的参数:

matplotlib.pyplot.hist(x,bins = None,range = None,density = None,weights = None,cumulative = False,bottom = None,histt​​ype =’bar’,align =’mid’,orientation =’vertical’,rwidth = None,log = False,color = None,label = None,stacked = False,normed = None,hold = None,data = None,** kwargs )

  • hist的参数详解翻录

x : (n,)数组或序列(n,)数组

输入值,这需要单个数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值