Aliasing (Jaggies)(走样)
光栅化会出现走样问题
走样体现在:锯齿
原因:像素本身有一定体积
解决:抗锯齿、反走样
Antialiasing(反走样、抗锯齿)
一些名称:
锯齿的学名:Aliasing
Sampling Artifacts:(瑕疵)
(Errors / Mistakes / Inaccuracies) in Computer Graphics
下图是走样出现的摩尔纹:
Antialiasing Idea: Blurring (Pre-Filtering) Before Sampling
反走样的一种方法:先取模糊、再采样
先采样再虚化是不可取的(Blurred Aliasing
Frequency Domain(频域)
我们定义cos2Πfx中的f就是频率:频率为1也就是每过一秒函数重复多少次次。
Fourier Transform (傅里叶级数展开)
任何一个周期函数,我们都可以把它写成一系列正弦和余弦函数的线性组合以及他们的常数项。(任何一个函数都可以分解成频率)
傅里叶变化就是把函数在固定频率上采样,下图可以看出频率越高的,采样损失精度越大,越不接近本来函数:
用傅里叶解释就是这种采样损失精度就是走样的体现:
## Filtering(滤波)
- 傅里叶变化可以把一个图像从时域变成频域。
- 中心:低频。外围:高频
- 亮度:信息量
- 水平和竖直的道:假设信号到了右边界以后会重复左边界的内容,也就是叠了好多个,那分界位置就会有一个剧烈的信号变化,也就是超高频,也就会看到这俩线。
- 任何信号在不同频率长什么样?频谱:
Low-pass filter(低通滤波)
把高频过滤掉,模糊边界
High-pass filter(高通滤波)
把低频过滤掉,显示边界
Convolution(卷积)
下图就是一个简单的卷积,通过中间的filter把原有数据转换成另一种形式
- 时域上,如果想对两个信号进行卷积,等同于频域上两个信号的乘积。
- 频域上,如果想对两个信号进行卷积,等同于时域上两个信号的乘积。
- 卷积核就是滤波器
可以使用卷积进行反走样中的模糊操作
Box Filter(卷积核、滤波器)
乘九分之一为了让图像亮度不会发生太大变化
- 先模糊(把高频信号砍掉)
- 再采样(可以避免频谱混叠)
Antialiasing By Supersampling (MSAA)
MSAA是一种较早提出的反走样方法,是“先滤波后采样”的一种近似可行方案。
在之前的文章中,我们认为每个像素的采样点是像素中心点。而在MSAA中,我们认为一个像素包含多个采样点,如2x2、4x4等。通过这些采样点被图形包含和未包含的数量可以近似出图形对本像素的覆盖率,每个像素的采样点越多,覆盖率越精确。
MSAA并非提升分辨率来反走样,而是增加采样点来得到合理的覆盖率。
MSAA的代价是增大了计算量,理论上来说采用“2x2”采样点计算量就会变为原来的4倍。但实际上,采样点并非均匀划分的,还会重复利用来降低计算量。所以,MSAA的损耗比理论上的要小。
其他抗锯齿方法 FXAA - Fast Approximate AA
快速近似抗锯齿,其原理并非增加采样点,而更类似于图象后处理。FXAA会先获得有锯齿的图象,然后通过图像匹配的方法找到锯齿边界,再对边界做处理。
TAA - TemporalAA
是一种时间层面上的抗锯齿方法。