DeepSeek-Math-7B部署笔记

1.环境部署简述

Coder部署分为两块部分:Pytorch和transformers
前者网上一堆教程就省去了,后者使用pip install transformers

1.1.模型下载

此网站被限制访问,需要科学上网。
https://huggingface.co/deepseek-ai/deepseek-math-7b-base

1.1.1. git同步下载

Windows需要提前安装git。

git lfs install

git clone https://huggingface.co/deepseek-ai/deepseek-math-7b-base

1.1.2.手动下载

下载地址:https://huggingface.co/deepseek-ai/deepseek-math-7b-base/tree/main
进入该网址进行下载。
在这里插入图片描述

2.使用环境

Windows 11 + Intel 6C12T + Nvidia 12GB
Python 3.9
Pytorch 2.5.1+cu118
PyCharm 2023.2.1
可与Yolo共存于同一个环境中

2.1.工程摆放路径

在这里插入图片描述

3.推理测试代码

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "./math/deepseek-math-7b-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

text = "The integral of x^2 from 0 to 2 is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

4.测试结果

在这里插入图片描述

5.后续更新所提供的进阶思路

后续本人将搭建一个致力于构建一个解决数学问题的助手。

5.1.搭建具备GUI的ChatBox

5.2.对现有模型进行进一步训练

5.3.实现麦克风语音转文本功能并接入该输入部分

5.4.根据输出文本实现相对应的功能

6. 总结

该模型用于解决数学问题,7B参数与Float16的前提下,测试官方案例占用显存容量在9.5G至10.2G的情况。
使用GPU加速回答时间基本上控制在10-30秒附近。

### DeepSeek-R1-Distill-Qwen-32B 模型介绍 DeepSeek-R1-Distill-Qwen-32B 是基于 Qwen2.5-32B 进行蒸馏得到的小规模密集模型之一。该模型通过从大型预训练模型 DeepSeek-R1 中提取知识,显著提升了推理能力和性能表现[^1]。 在开发过程中,研究人员选择了 Qwen2.5-32B 作为基础模型,并直接从 DeepSeek-R1 进行了知识蒸馏。实验结果显示,在多个基准测试中,这种直接蒸馏的方法比使用强化学习优化后的效果更好,表明大模型所发现的推理模式对于提升小模型的能力非常重要[^2]。 ### 性能比较:DeepSeek-R1-Distill-Qwen-32B vs. 14B 版本 研究表明,经过精心设计的知识蒸馏过程后,即使是参数量较少的模型也能达到甚至超过更大规模模型的表现: - **14B 模型**:蒸馏后的 14B 模型大幅超越了当时最先进水平的开源 QwQ-32B-Preview (Qwen, 2024a),显示出强大的竞争力。 - **32B 和 70B 模型**:这些更大的蒸馏版模型不仅保持住了原有优势,还在密集模型中的推理基准上创下了新纪录。特别是 DeepSeek-R1-Distill-Qwen-32B,在某些特定任务上的成绩尤为突出,例如 AIME 2024 数学竞赛方面超过了 GPT-4o 和 Claude 3.5 的表现[^3]。 综上所述,虽然 32B 版本拥有更多的参数数量,但在实际应用场景下两者之间的差距可能取决于具体任务需求;而就整体而言,32B 版本确实展现出了更强的整体实力和更广泛的应用潜力。 ```python # 示例代码展示如何加载并评估两个不同大小的模型 import torch from transformers import AutoModelForCausalLM, AutoTokenizer def evaluate_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "Evaluate this math problem:" inputs = tokenizer(input_text, return_tensors="pt") with torch.no_grad(): outputs = model.generate(**inputs, max_length=50) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"Result from {model_name}: ", result) evaluate_model('DeepSeek-R1-Distill-Qwen-14B') evaluate_model('DeepSeek-R1-Distill-Qwen-32B') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AzusaFighting

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值