cudnn.benchmark = True什么意思

在很多情况下我们都能看到代码里有这样一行:

torch.backends.cudnn.benchmark = True

而且大家都说这样可以增加程序的运行效率。那到底有没有这样的效果,或者什么情况下应该这样做呢?

总的来说,大部分情况下,设置这个 flag 可以让内置的 cudnn 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题。

一般来讲,应该遵循以下准则:

  1. 如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率;
  2. 如果网络的输入数据在每次 iteration 都变化的话,会导致 cudnn 每次都会去寻找一遍最优配置,这样反而会降低运行效率。

不使用的话,也很简单:

torch.backends.cudnn.benchmark = False

参考:
https://www.pytorchtutorial.com/when-should-we-set-cudnn-benchmark-to-true/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值