【模型参数优化】网格搜索对KNN分类模型进行参数寻优【附python实现代码】

写在前面:
首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

历史文章回顾:
灰狼优化算法:【智能优化算法】灰狼优化算法【附python实现代码】
白鲸优化算法:【智能优化算法】白鲸优化算法【附python实现代码】
【智能优化算法】粒子群优化KNN分类算法【附python实现代码】
【智能优化算法】粒子群优化随机森林分类算法【附python实现代码】
【智能优化算法】粒子群优化LightGBM分类算法【附python实现代码】
【模型参数优化】随机搜索对随机森林分类模型进行参数寻优【附python实现代码】
【模型参数优化】网格搜索对随机森林分类模型进行参数寻优【附python实现代码】

在这里插入图片描述

1、介绍

网格搜索是一种在多个维度上搜索最优解的方法,主要用于解决多变量问题,特别是寻找极值(包括极小值和极大值)。以下是网格搜索在不同领域的应用和定义:

  • 化学领域:网格搜索被定义为在寻找多变量问题的所有极值中,以固定增量改变每个变量的搜索极值的方法。
    信息技术领域:网格搜索通过建立跨越Web的信息分布和集成应用程序逻辑,利用现有的网络基础设施、协议规范、Web和数据库技术,为用户提供一体化的智能信息平台。这个平台的目标是创建一种基于Internet的新一代信息平台和软件基础设施,实现全面的信息资源共享。
  • 机器学习和模式识别领域:网格搜索算法是一种数学方法,用于确定最优参数组合以实现最佳性能。这种方法的核心思想是通过枚举某个空间中的所有可能解,并以某种评价准则度量各种解,从而寻求最佳解。通常,可以使用函数的参数空间组成一个网格,并在每个网格点处测试样本,然后根据测试得出的性能结果进行比较,最终确定最有效的参数组合。
  • 模型超参数优化:网格搜索也是一项模型超参数优化技术,常用于优化三个或更少数量的超参数。对于每个超参数,使用者选择一个较小的有限集去探索,然后这些超参数的笛卡尔乘积得到若干组超参数。网格搜索使用每组超参数训练模型,并挑选验证集误差最小的超参数作为最好的超参数。

总的来说,网格搜索是一种强大的工具,可以在多个维度上搜索最优解,适用于各种领域和问题。
【From 大模型】

2、实战代码

使用网格搜索对KNN分类模型进行参数寻优:

# -*- coding: utf-8 -*-
"""
Created on Fri May  3 21:55:32 2024

@author: 63454

https://zhuanlan.zhihu.com/p/647588686
"""


from sklearn.model_selection import GridSearchCV  
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.datasets import load_wine  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import accuracy_score
import time

  
# 加载数据集  
wine = load_wine()  
X = wine.data  
y = wine.target  
  
# 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=10)  

print("---------------------使用默认参数----------------------------")
# 初始化随机森林分类器  
model = KNeighborsClassifier()
# 训练
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print("默认参数 accuracy:", acc)
  
print("---------------------参数寻优----------------------------")
t1 = time.time()
# 定义参数网格  
param_grid = {  
    'n_neighbors': range(2, 50), # [500, 600, 700, 800]   
}  
  
# 初始化随机森林分类器  
model = KNeighborsClassifier()  
# 初始化网格搜索对象  
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy', verbose=2)  
# 执行网格搜索  
grid_search.fit(X_train, y_train)  
t2 = time.time()
# 输出最优参数  
print("Best parameters:")  
print()  
print(grid_search.best_params_)
print("time:", t2-t1)

print("---------------------最优模型----------------------------")
model_best_params = grid_search.best_params_
model = grid_search.best_estimator_
# 训练
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print("最优参数 accuracy:", acc)

终端输出:

---------------------使用默认参数----------------------------
默认参数 accuracy: 0.6481481481481481

[CV] END .....................................n_neighbors=47; total time=   0.0s
[CV] END .....................................n_neighbors=47; total time=   0.0s
[CV] END .....................................n_neighbors=48; total time=   0.0s
[CV] END .....................................n_neighbors=48; total time=   0.0s
[CV] END .....................................n_neighbors=48; total time=   0.0s
[CV] END .....................................n_neighbors=48; total time=   0.0s
[CV] END .....................................n_neighbors=48; total time=   0.0s
[CV] END .....................................n_neighbors=49; total time=   0.0s
[CV] END .....................................n_neighbors=49; total time=   0.0s
[CV] END .....................................n_neighbors=49; total time=   0.0s
[CV] END .....................................n_neighbors=49; total time=   0.0s
[CV] END .....................................n_neighbors=49; total time=   0.0s
Best parameters:

{'n_neighbors': 3}
time: 0.3764808177947998
---------------------最优模型----------------------------
最优参数 accuracy: 0.6851851851851852

可以看到寻优后最优K值为3,精度提升0.04以上。

3、总结

网格搜索(Grid Search)作为一种参数寻优技术,具有其独特的优点和缺点。

优点:

全面搜索:网格搜索是一种全面的搜索策略,能够穷尽所有参数的所有可能组合。这种策略可以确保在设定的参数范围内,找到最优的参数组合,从而达到最佳的效果,避免陷入局部最优解。
直观易懂:网格搜索的方法简单直接,易于理解和实现。它通过遍历所有可能的参数组合来找到最优的超参数集,对于初学者来说,是一种非常直观的超参数调优方法。
适用于参数量较少的情况:在所需设置的参数数目即参数维数较少的情况下,网格搜索算法的运算复杂度往往比较低,同时可以节省时间成本。此外,网格搜索算法可以并行计算,每组参数组合之间是相互独立没有相关联系的,因此可以在一定范围的区间内,从初始位置同时向多个方向出发搜索。

缺点:

计算成本高:网格搜索的主要缺点是计算成本非常高,尤其是当超参数空间很大或者模型训练时间很长时。因为需要尝试大量的参数组合,这会导致搜索时间过长,甚至在某些情况下变得不实际。
可能错过最优参数:网格搜索只能在有限的、预设的参数组合中进行搜索,因此可能会错过最优参数。如果预设的参数空间区域小,或者参数的取值范围设置不当,就有可能导致搜索不到最佳的参数值。
不适用于大规模数据集:对于中等或大规模数据量的搜索问题,网格搜索需要遍历所有参数的所有可能性,这会耗费过多的时间成本,搜索代价高昂。在大多数的设备中,对于几万个待寻优参数,每个参数有数千个候选值的情况,预计需要几天的时间来搜索最佳的参数组合。
因此,在选择是否使用网格搜索进行参数寻优时,需要根据实际问题的特点和需求进行权衡和选择。对于参数空间较小、计算资源充足的情况,网格搜索是一个不错的选择。然而,对于参数空间较大或计算资源有限的情况,可能需要考虑其他更为高效的参数寻优方法,如随机搜索(Random Search)等。

参考:
https://blog.csdn.net/qq_41076797/article/details/102755904
https://zhuanlan.zhihu.com/p/647588686

  • 16
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: Python是一种常用的编程语言,广泛应用于数据科学和机器学习领域。其中机器学习库sklearn提供了许多常用的算法和工具,方便用户进行数据分析和模型训练。 其中之一是k近邻(k-nearest neighbors,KNN分类算法KNN是一种基于实例的学习方,它通过在特征空间中寻找最近的k个邻居来预测新的样本标签。在Python中使用sklearn库实现KNN分类算法非常简单。 首先,需要导入相关的库和模块。常用的库包括numpy(处理数值计算)、sklearn(机器学习库)和sklearn.neighbors(KNN算法模块)。 接下来,需要准备样本数据集。这包括特征矩阵和对应的标签。可以使用numpy数组或pandas数据框来存储数据。 然后,需要对数据进行预处理。这包括划分数据集为训练集和测试集,并进行特征缩放和标准化等操作。可以使用sklearn.preprocessing模块中的函数来进行这些操作。 接下来,需要创建一个KNeighborsClassifier对象,并设置相关参数。其中,最重要的是k值,即选择最近的k个邻居来进行预测。 然后,使用fit()方将训练集的特征矩阵和标签传递给KNeighborsClassifier对象,以进行模型训练。 最后,可以使用predict()方将测试集的特征矩阵传递给KNeighborsClassifier对象,并得到对应的预测结果。 除了这些基本步骤之外,还可以通过交叉验证和网格搜索等方优化模型参数和评估模型的性能。sklearn库提供了相应的函数和方实现这些操作。 总之,使用Python中的sklearn库可以很方便地实现KNN分类算法。只需要按照上述步骤导入相关库、准备数据、预处理数据、创建模型、训练模型和预测结果即可。这是一个简便且高效的方,帮助用户实现KNN分类算法来解决分类问题。 ### 回答2: K最近邻(K-nearest neighbors,简称KNN)是一种基本的分类算法,在Python中可以使用scikit-learn库(sklearn)来实现。以下是使用sklearn实现KNN分类算法的步骤: 1. 导入需要的库和模块:首先需要导入sklearn库中的KNeighborsClassifier模块,以及其他辅助模块,如numpy和pandas。 2. 准备数据集:将数据集划分为特征集(X)和目标标签(y)。特征集包含用于分类的属性,而目标标签则包含每个样本的分类结果。 3. 对数据集进行预处理:根据需要进行数据预处理,如数据清洗、缺失值处理或特征标准化等。 4. 划分数据集:将数据集划分为训练集和测试集,一般会使用train_test_split函数将数据按照一定的比例划分。 5. 创建KNN模型:使用KNeighborsClassifier创建一个KNN分类模型,并可设置K值和距离度量方式等参数。 6. 模型训练:使用fit函数对训练集进行训练,让模型学习训练集的模式。 7. 模型预测:使用predict函数对测试集进行预测,得到分类结果。 8. 模型评估:对预测结果进行评估,可使用accuracy_score等函数计算准确率、召回率等指标。 9. 调参优化:通过调整K值或距离度量方式等参数,可以对模型进行优化,提高分类性能。 10. 结果分析和应用:根据模型预测的结果进行分析,可以根据需要进行后续的实际应用。 总之,使用sklearn实现KNN分类算法可以简化KNN模型的搭建和使用过程,使得开发者能够快速实现KNN算法进行分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值