【智能优化算法】粒子群优化LightGBM分类算法【附python实现代码】

写在前面:
首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

历史文章回顾:
灰狼优化算法:【智能优化算法】灰狼优化算法【附python实现代码】
白鲸优化算法:【智能优化算法】白鲸优化算法【附python实现代码】
【智能优化算法】粒子群优化KNN分类算法【附python实现代码】
【智能优化算法】粒子群优化随机森林分类算法【附python实现代码】

在这里插入图片描述

教程之前先安装pyswarm库:
在这里插入图片描述

1、介绍

粒子群优化(PSO)算法是一种受到鸟群觅食行为启发的优化算法。在PSO中,每个粒子代表一个解,而整个粒子群则代表了解空间。算法的基本思想是通过粒子之间的合作与竞争,不断更新粒子的位置和速度,以找到最优解。

而pyswarm是一个专门用于实现粒子群优化(PSO)的Python库。它提供了一组工具和类,使得用户能够轻松地使用PSO算法来解决连续和组合优化问题。通过pyswarm,用户能够利用PSO的并行性和全局搜索能力,快速找到问题的最优解。

pyswarm库具有以下几个特点:

  • 易用性:pyswarm提供了简洁明了的API接口,用户只需要定义适应度函数和设置相应的参数,即可开始使用PSO算法进行优化。
  • 灵活性:pyswarm允许用户自定义适应度函数和粒子群的行为,以适应不同的问题需求。用户可以根据问题的特性,调整粒子的速度更新公式和位置更新公式,以获得更好的优化效果。
  • 高效性:pyswarm利用Python的高效数值计算库,如NumPy,来加速计算过程。这使得pyswarm在处理大规模优化问题时能够保持较高的效率。

在使用pyswarm时,用户通常需要指定搜索空间的上下界、粒子群的大小和最大迭代次数等参数。然后,通过调用pyswarm的函数来执行优化过程。优化完成后,pyswarm会返回找到的最优解和相应的适应度值。

总的来说,pyswarm是一个功能强大且易于使用的粒子群优化库,适用于解决各种优化问题。通过它,用户可以方便地利用PSO算法的全局搜索能力,快速找到问题的最优解。

2、实战代码

本次博文的内容聚焦于实战,如何使用pyswarm中的pso进行参数优化,下面给出一个优化函数的实例:

import pyswarm  
import numpy as np  
  
# 定义目标函数  
def objective_function(x):  
    # 计算成本或损失  
    return np.sum(x**2)  
  
# 定义搜索空间的边界  
lb = [-10, -10]  # 下界  
ub = [10, 10]    # 上界  
  
# 设置粒子群大小和最大迭代次数  
swarmsize = 100  
maxiter = 100  
  
# 执行 PSO 优化  
xopt, fopt = pyswarm.pso(objective_function, lb, ub, swarmsize=swarmsize, maxiter=maxiter)  
  
# 输出最优解和最优值  
print("Optimal position:", xopt)  
print("Optimal cost:", fopt)

提供的代码示例展示了如何使用 pyswarm 库中的 pso 函数来执行粒子群优化(PSO)算法,以找到给定目标函数的最小值。代码定义了一个目标函数 objective_function,它计算了输入向量 x 中每个元素的平方和。然后,设置了搜索空间的边界 lb 和 ub,定义了粒子群的大小 swarmsize 和最大迭代次数 maxiter。最后,调用 pyswarm.pso 函数来执行优化,并打印出找到的最优解和最优值。

代码本身看起来是正确的,并且应该能够正常运行。当运行这段代码时,pyswarm 会使用粒子群优化算法来寻找目标函数 objective_function 在指定搜索空间内的最小值。在每次迭代中,粒子会根据它们的位置、速度和个体/全局最优解来更新它们的位置,直到达到最大迭代次数或满足其他停止条件。

请注意,由于 pyswarm 是一个随机算法,每次运行代码时得到的最优解可能会有所不同,尽管在多次运行后通常会收敛到相近的值。此外,对于某些复杂的问题,可能需要调整 swarmsize 和 maxiter 等参数以获得更好的结果。

如果遇到任何问题或错误,请确保已经正确安装了 pyswarm 库(可以通过运行 pip install pyswarm 来安装),并且的 Python 环境是兼容的。此外,如果使用的是较新的 pyswarm 版本,请检查其文档以确保参数和用法没有发生变化。

下面给出一个优化LightGBM分类的实例:

import numpy as np  
from sklearn.datasets import load_iris  
from sklearn.model_selection import cross_val_score  
from lightgbm import LGBMClassifier  
from pyswarm import pso  
  
# 加载数据集  
iris = load_iris()  
X = iris.data  
y = iris.target  
  
# 定义目标函数,使用交叉验证评估LightGBM分类器的性能  
def objective_function(params):  
    num_leaves = int(params[0])  
    learning_rate = float(params[1])  
      
    # 初始化LightGBM分类器  
    lgbm = LGBMClassifier(num_leaves=num_leaves, learning_rate=learning_rate, random_state=42)  
      
    # 使用交叉验证评估分类器性能,这里使用5折交叉验证  
    scores = cross_val_score(lgbm, X, y, cv=5, scoring='accuracy')  
      
    # 返回平均准确率作为优化目标  
    return -np.mean(scores)  # 注意这里取负值,因为pso默认寻找最小值  
  
# 设置PSO的参数范围  
# 假设合理的num_leaves范围是从31到127,learning_rate范围是从0.01到0.1  
lb = [31, 0.01]  # 参数下界  
ub = [127, 0.1]  # 参数上界  
  
# 运行PSO优化  
xopt, fopt = pso(objective_function, lb, ub, swarmsize=100, maxiter=100, debug=True)  
  
# 输出最优参数和对应的负平均准确率  
print(f"最优参数: num_leaves={int(xopt[0])}, learning_rate={xopt[1]}")  
print(f"最优负平均准确率: {fopt}")  
  
# 使用最优参数值重新训练LightGBM分类器  
best_lgbm = LGBMClassifier(num_leaves=int(xopt[0]), learning_rate=xopt[1], random_state=42)  
best_lgbm.fit(X, y)

当然,上面只是一个案例,你可以根据自身的需求,修改需要优化的模型参数。

终端输出:

Best after iteration 1: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 2: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 3: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 4: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 5: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 6: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 7: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 8: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 9: [6.45365767e+01 3.59602574e-02] -0.9533333333333334
Best after iteration 10: [6.45365767e+01 3.59602574e-02] -0.9533333333333334

pyswarm 是一个 Python 库,用于实现粒子群优化(PSO)算法来解决优化问题。在使用 pyswarm 时,用户需要设置一些参数来控制优化过程。以下是一些常用的 pyswarm 参数及其解释:

  • func: 这是一个函数对象,定义了要优化的目标函数。它接受一个表示潜在解的向量(例如一个NumPy数组)作为输入,并返回一个实数,即该解的评估值(例如成本或损失)。
  • lb 和 ub: 这两个参数分别定义了搜索空间的下界和上界。它们通常是NumPy数组,其长度与目标函数的输入维度相同。这些边界限定了粒子在搜索空间中可以移动的范围。
  • swarmsize: 这个参数定义了粒子群的大小,即参与优化的粒子数量。较大的粒子群可能有助于找到全局最优解,但也会增加计算成本。
  • maxiter: 这个参数指定了优化过程的最大迭代次数。在达到最大迭代次数后,算法将停止,并返回当前找到的最优解。
  • tol: 这是一个容忍度参数,用于判断何时停止优化过程。如果连续多次迭代中,最优解的变化小于此容忍度,算法将提前终止。
  • debug: 这是一个布尔值,用于控制是否输出调试信息。如果设置为 True,则算法会在运行过程中输出一些中间结果和状态信息。
  • 34
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是使用粒子群优化算法实现的SVM多分类Python代码: ```python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.svm import SVC # 定义粒子群优化算法 class PSO: def __init__(self, num_particles, max_iter, c1, c2, w, dim): self.num_particles = num_particles self.max_iter = max_iter self.c1 = c1 self.c2 = c2 self.w = w self.dim = dim self.x = np.random.uniform(low=-1, high=1, size=(num_particles, dim)) self.v = np.random.uniform(low=-1, high=1, size=(num_particles, dim)) self.pbest_x = self.x.copy() self.pbest_y = np.zeros(num_particles) self.gbest_x = np.zeros(dim) self.gbest_y = float('inf') def update(self, X_train, y_train): clf = SVC(kernel='linear') for i in range(self.num_particles): # 训练支持向量机模型 clf.fit(X_train, y_train) # 使用支持向量机模型预测 y_pred = clf.predict(X_train) # 计算分类准确率 score = accuracy_score(y_train, y_pred) # 更新个体最优解 if score > self.pbest_y[i]: self.pbest_x[i] = self.x[i].copy() self.pbest_y[i] = score # 更新全局最优解 if score > self.gbest_y: self.gbest_x = self.x[i].copy() self.gbest_y = score # 更新粒子速度和位置 r1 = np.random.rand(self.dim) r2 = np.random.rand(self.dim) self.v[i] = self.w * self.v[i] + self.c1 * r1 * (self.pbest_x[i] - self.x[i]) + self.c2 * r2 * (self.gbest_x - self.x[i]) self.x[i] = self.x[i] + self.v[i] def fit(self, X_train, y_train): for i in range(self.max_iter): self.update(X_train, y_train) # 加载鸢尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义PSO算法参数 num_particles = 30 max_iter = 100 c1 = 2 c2 = 2 w = 0.8 dim = X_train.shape[1] # 初始化PSO算法 pso = PSO(num_particles, max_iter, c1, c2, w, dim) # 训练PSO-SVM分类pso.fit(X_train, y_train) # 使用最优参数训练支持向量机模型 clf = SVC(kernel='linear') clf.fit(X_train, y_train) # 在测试集上测试模型性能 y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` 在上述代码中,我们首先定义了一个粒子群优化算法类 `PSO`,其中 `update` 方法用于更新粒子速度和位置,并在每次更新后训练支持向量机模型并计算分类准确率。在 `fit` 方法中,我们多次调用 `update` 方法来寻找最优解。最后,我们使用最优参数训练支持向量机模型,并在测试集上测试模型性能。 需要注意的是,这里使用的是线性核函数的支持向量机模型。如果需要使用其他核函数,可以在 `SVC` 的构造函数中设置。另外,由于粒子群优化算法通常是一种全局优化方法,所以在实际应用中需要考虑算法的收敛速度和计算复杂度等问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值