基于python的sobel-scharr-laplacian不同算子的差异

本文探讨了Python的OpenCV库中用于边缘检测的不同算子,包括Sobel、Scharr和Laplacian。通过示例代码展示了这些算子的使用,并给出了实验结果。
摘要由CSDN通过智能技术生成

所有代码如下 :


# 不同算子的差异
import cv2
import numpy as np


def cv_show(img, name):     # 图片展示
    cv2.imshow(name, img)
    cv2.waitKey()
    cv2.destroyAllWindows()

# sobel
img = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)  # 读灰度图
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)  # cv2.CV_64F表示可以读到更大的范围,包括负数
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)    # cv2.convertScaleAbs()-->绝对值
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)  # 0.5x + 0.5y  *分别计算x,y再求和*

# scharr
scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)
scharrx = cv2.convertScaleAbs(scharrx)
scharry = cv2.convertScaleAbs(scharry)
scharrxy = cv2.addWeighted(scharrx, 0.5, scharry, 0.5, 0)

# lpls
laplacian = cv2.Laplacian(img, cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)

res = np.hstack((sobelxy, scharrxy, laplacian))
cv_show(res, 'res')

最终结果如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值