import pandas as pd
import numpy as np
df=pd.read_csv("export.csv")
df
| 分类 | 食物名 | 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
0 | 谷物类 | 稻米 | 26 | 2.192723 | 0.192691 | 0.132008 | 19.879120 | 0.768167 | 1.976958 |
---|
1 | 谷物类 | 稻谷(早籼) | 16 | 2.481894 | 0.551532 | 0.350975 | 18.752089 | 0.401114 | 3.259053 |
---|
2 | 谷物类 | 大麦(元麦) | 29 | 2.990228 | 0.410423 | 2.902280 | 18.586319 | 0.469055 | 3.811075 |
---|
3 | 谷物类 | 大黄米(黍) | 26 | 3.507163 | 0.696275 | 0.902579 | 17.432665 | 0.438395 | 7.736390 |
---|
4 | 谷物类 | 方便面 | 19 | 1.811441 | 4.023305 | 0.133475 | 11.612288 | 218.135593 | 4.766949 |
---|
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
---|
676 | 豆乳类 | 青豆(青大豆) | 24 | 2.292225 | 8.348525 | 3.860590 | 3.040214 | 2.434584 | 0.434316 |
---|
677 | 豆乳类 | 酸豆乳 | 134 | 113.507463 | 2.955224 | 1.611940 | 0.000000 | 1.491045 | 24.985075 |
---|
678 | 豆乳类 | 素大肠 | 59 | 37.058824 | 10.647059 | 2.117647 | 0.588235 | 0.000000 | 85.117647 |
---|
679 | 豆乳类 | 素火腿 | 43 | 23.459716 | 8.146919 | 5.630332 | 0.383886 | 11.085782 | 288.298578 |
---|
680 | 豆乳类 | 稻米3(粳,特级) | 27 | 1.970000 | 0.110000 | 0.110000 | 20.290000 | 1.670000 | 6.470000 |
---|
681 rows × 9 columns
df['重量']
0 26
1 16
2 29
3 26
4 19
...
676 24
677 134
678 59
679 43
680 27
Name: 重量, Length: 681, dtype: int64
修改索引值(可以自己指定,方便看),默认是012……
df=df.set_index('食物名')
df
| 分类 | 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
食物名 | | | | | | | | |
---|
稻米 | 谷物类 | 26 | 2.192723 | 0.192691 | 0.132008 | 19.879120 | 0.768167 | 1.976958 |
---|
稻谷(早籼) | 谷物类 | 16 | 2.481894 | 0.551532 | 0.350975 | 18.752089 | 0.401114 | 3.259053 |
---|
大麦(元麦) | 谷物类 | 29 | 2.990228 | 0.410423 | 2.902280 | 18.586319 | 0.469055 | 3.811075 |
---|
大黄米(黍) | 谷物类 | 26 | 3.507163 | 0.696275 | 0.902579 | 17.432665 | 0.438395 | 7.736390 |
---|
方便面 | 谷物类 | 19 | 1.811441 | 4.023305 | 0.133475 | 11.612288 | 218.135593 | 4.766949 |
---|
... | ... | ... | ... | ... | ... | ... | ... | ... |
---|
青豆(青大豆) | 豆乳类 | 24 | 2.292225 | 8.348525 | 3.860590 | 3.040214 | 2.434584 | 0.434316 |
---|
酸豆乳 | 豆乳类 | 134 | 113.507463 | 2.955224 | 1.611940 | 0.000000 | 1.491045 | 24.985075 |
---|
素大肠 | 豆乳类 | 59 | 37.058824 | 10.647059 | 2.117647 | 0.588235 | 0.000000 | 85.117647 |
---|
素火腿 | 豆乳类 | 43 | 23.459716 | 8.146919 | 5.630332 | 0.383886 | 11.085782 | 288.298578 |
---|
稻米3(粳,特级) | 豆乳类 | 27 | 1.970000 | 0.110000 | 0.110000 | 20.290000 | 1.670000 | 6.470000 |
---|
681 rows × 8 columns
df['重量']
食物名
稻米 26
稻谷(早籼) 16
大麦(元麦) 29
大黄米(黍) 26
方便面 19
...
青豆(青大豆) 24
酸豆乳 134
素大肠 59
素火腿 43
稻米3(粳,特级) 27
Name: 重量, Length: 681, dtype: int64
获取两列
df[['重量','钠']]
| 重量 | 钠 |
---|
食物名 | | |
---|
稻米 | 26 | 0.768167 |
---|
稻谷(早籼) | 16 | 0.401114 |
---|
大麦(元麦) | 29 | 0.469055 |
---|
大黄米(黍) | 26 | 0.438395 |
---|
方便面 | 19 | 218.135593 |
---|
... | ... | ... |
---|
青豆(青大豆) | 24 | 2.434584 |
---|
酸豆乳 | 134 | 1.491045 |
---|
素大肠 | 59 | 0.000000 |
---|
素火腿 | 43 | 11.085782 |
---|
稻米3(粳,特级) | 27 | 1.670000 |
---|
681 rows × 2 columns
weight=df['重量']
weight['稻米']
26
loc 用label来定位
iloc 用position来定位
df.loc['稻米']['重量']
26
df.loc['稻米':'方便面']
| 分类 | 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
食物名 | | | | | | | | |
---|
稻米 | 谷物类 | 26 | 2.192723 | 0.192691 | 0.132008 | 19.879120 | 0.768167 | 1.976958 |
---|
稻谷(早籼) | 谷物类 | 16 | 2.481894 | 0.551532 | 0.350975 | 18.752089 | 0.401114 | 3.259053 |
---|
大麦(元麦) | 谷物类 | 29 | 2.990228 | 0.410423 | 2.902280 | 18.586319 | 0.469055 | 3.811075 |
---|
大黄米(黍) | 谷物类 | 26 | 3.507163 | 0.696275 | 0.902579 | 17.432665 | 0.438395 | 7.736390 |
---|
方便面 | 谷物类 | 19 | 1.811441 | 4.023305 | 0.133475 | 11.612288 | 218.135593 | 4.766949 |
---|
df.iloc[0]
分类 谷物类
重量 26
蛋白质 2.19272
脂肪 0.192691
膳食纤维 0.132008
碳水化物 19.8791
钠 0.768167
钙 1.97696
Name: 稻米, dtype: object
df.iloc[0:3]
| 分类 | 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
食物名 | | | | | | | | |
---|
稻米 | 谷物类 | 26 | 2.192723 | 0.192691 | 0.132008 | 19.879120 | 0.768167 | 1.976958 |
---|
稻谷(早籼) | 谷物类 | 16 | 2.481894 | 0.551532 | 0.350975 | 18.752089 | 0.401114 | 3.259053 |
---|
大麦(元麦) | 谷物类 | 29 | 2.990228 | 0.410423 | 2.902280 | 18.586319 | 0.469055 | 3.811075 |
---|
df.iloc[0:3,1:3]
| 重量 | 蛋白质 |
---|
食物名 | | |
---|
稻米 | 26 | 2.192723 |
---|
稻谷(早籼) | 16 | 2.481894 |
---|
大麦(元麦) | 29 | 2.990228 |
---|
筛选
df[df['分类']=='肉类']
| 分类 | 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
食物名 | | | | | | | | |
---|
肠 | 肉类 | 30 | 14.207634 | 3.782082 | 7.724912 | 0.0 | 0.089103 | 279.045720 |
---|
叉烧肉 | 肉类 | 32 | 15.870968 | 7.677419 | 5.451613 | 0.0 | 0.219355 | 264.129032 |
---|
方腿 | 肉类 | 77 | 56.846154 | 12.461538 | 3.846154 | 0.0 | 0.115385 | 326.538462 |
---|
宫爆肉丁(罐头) | 肉类 | 27 | 11.919643 | 4.741071 | 7.392857 | 0.0 | 0.404464 | 126.401786 |
---|
狗肉 | 肉类 | 62 | 58.965517 | 13.034483 | 3.568966 | 0.0 | 1.086207 | 36.775862 |
---|
... | ... | ... | ... | ... | ... | ... | ... | ... |
---|
田鸡(青蛙) | 肉类 | 36 | 76.838710 | 19.838710 | 1.161290 | 0.0 | 0.532258 | 11.419355 |
---|
田鸡腿(青蛙腿) | 肉类 | 40 | 93.075949 | 13.443038 | 1.594937 | 0.0 | 0.660759 | 245.164557 |
---|
蝎子 | 肉类 | 51 | 24.610169 | 13.322034 | 2.389831 | 0.0 | 3.859322 | 58.830508 |
---|
中国鲎 | 肉类 | 97 | 120.142857 | 14.714286 | 2.142857 | 0.0 | 3.285714 | 0.000000 |
---|
炸鸡(肯德鸡) | 肉类 | 23 | 15.935484 | 6.548387 | 5.580645 | 0.0 | 2.077419 | 243.548387 |
---|
262 rows × 8 columns
df[df['分类']=='肉类']['重量']
56.36641221374046
基本统计指标
df.describe()
| 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
count | 681.000000 | 681.000000 | 681.000000 | 681.000000 | 681.000000 | 681.000000 | 681.000000 |
---|
mean | 122.756241 | 112.119549 | 7.082490 | 2.380822 | 5.157334 | 34.052483 | 557.301880 |
---|
std | 211.080287 | 223.202680 | 5.983232 | 8.329738 | 7.563437 | 561.686112 | 2684.146695 |
---|
min | 7.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
---|
25% | 30.000000 | 5.518033 | 1.756098 | 0.297794 | 0.000000 | 0.123913 | 6.000000 |
---|
50% | 47.000000 | 36.000000 | 5.727273 | 1.000000 | 1.139241 | 0.916981 | 27.900000 |
---|
75% | 136.000000 | 105.300000 | 11.460000 | 2.855573 | 7.702328 | 3.323077 | 104.610390 |
---|
max | 3000.000000 | 2892.000000 | 45.000000 | 180.972973 | 57.600000 | 14142.913040 | 32286.666670 |
---|
groupby
df.groupby('分类').sum()
| 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
分类 | | | | | | | |
---|
水果类 | 7870 | 7749.405556 | 104.545800 | 43.734145 | 212.281453 | 142.063666 | 1145.775009 |
---|
肉类 | 14768 | 13889.115836 | 3110.533468 | 915.063512 | 0.000000 | 384.592469 | 49096.447432 |
---|
蔬菜类 | 49439 | 51871.136219 | 1150.082174 | 162.789894 | 1095.084777 | 14691.616430 | 324695.914233 |
---|
谷物类 | 8380 | 378.092086 | 231.878966 | 401.588553 | 2141.576094 | 7733.783997 | 2057.292955 |
---|
豆乳类 | 3140 | 2465.662844 | 226.135330 | 98.163964 | 63.201943 | 237.684029 | 2527.150658 |
---|
协方差 相关系数
df.cov()
| 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
重量 | 44554.887553 | 41182.411708 | 233.306873 | 323.478724 | 413.007569 | 13629.479642 | 8.990307e+04 |
---|
蛋白质 | 41182.411708 | 49819.436385 | 289.770895 | -81.337915 | 393.438141 | -137.169258 | 6.135819e+04 |
---|
脂肪 | 233.306873 | 289.770895 | 35.799061 | 0.114819 | -14.506120 | -37.135525 | 5.362664e+02 |
---|
膳食纤维 | 323.478724 | -81.337915 | 0.114819 | 69.384535 | -4.586858 | 594.002972 | -5.682174e+02 |
---|
碳水化物 | 413.007569 | 393.438141 | -14.506120 | -4.586858 | 57.205577 | 20.115411 | -1.969337e+02 |
---|
钠 | 13629.479642 | -137.169258 | -37.135525 | 594.002972 | 20.115411 | 315491.288159 | 2.764420e+05 |
---|
钙 | 89903.074886 | 61358.194926 | 536.266377 | -568.217363 | -196.933720 | 276441.965879 | 7.204643e+06 |
---|
df.corr()
| 重量 | 蛋白质 | 脂肪 | 膳食纤维 | 碳水化物 | 钠 | 钙 |
---|
重量 | 1.000000 | 0.874107 | 0.184733 | 0.183978 | 0.258697 | 0.114958 | 0.158679 |
---|
蛋白质 | 0.874107 | 1.000000 | 0.216980 | -0.043748 | 0.233055 | -0.001094 | 0.102416 |
---|
脂肪 | 0.184733 | 0.216980 | 1.000000 | 0.002304 | -0.320550 | -0.011050 | 0.033392 |
---|
膳食纤维 | 0.183978 | -0.043748 | 0.002304 | 1.000000 | -0.072806 | 0.126959 | -0.025414 |
---|
碳水化物 | 0.258697 | 0.233055 | -0.320550 | -0.072806 | 1.000000 | 0.004735 | -0.009701 |
---|
钠 | 0.114958 | -0.001094 | -0.011050 | 0.126959 | 0.004735 | 1.000000 | 0.183360 |
---|
钙 | 0.158679 | 0.102416 | 0.033392 | -0.025414 | -0.009701 | 0.183360 | 1.000000 |
---|
统计一样的值出现的次数
df.value_counts('分类')
分类
肉类 262
蔬菜类 175
谷物类 134
水果类 77
豆乳类 33
dtype: int64
升序
df.value_counts('分类',ascending=True)
分类
豆乳类 33
水果类 77
谷物类 134
蔬菜类 175
肉类 262
dtype: int64