机器视觉基本概述

 

 

文章目录

  • 前言
  • 一、机器视觉概述
  • 二、机器视觉工作原理
  • 三、数字图像处理传统算法
  • 四、机器视觉应用领域
  • 总结

 


前言

机器视觉是指计算机系统通过使用图像处理技术对图像或视频进行处理和分析,以模拟人类视觉系统的能力。它包括图像的获取、处理、分析和理解等多个方面,可以实现图像识别、目标检测、图像分割、运动跟踪等功能。机器视觉在自动驾驶、工业检测、安防监控、医学影像等领域有着广泛的应用。


一、机器视觉概述

1.1概念

机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

1.2功能

1.目标识别

目标识别可用来甄别不同的被测物体,也可以识别一维码、二维码、OCR等各类信息。

2.位置探测

位置探测多用于协助机器人在拆卸装配产品、加工喷涂部件、拆垛码垛等工序中准确寻找到目标位置。

3.完成性检测

完整性检测多用于判断元器件是否安装在正确的位置。

4.形状和尺寸测量

形状和尺寸测量多用于检测产品或部件的集合参数在允许的公差范围内。

5.表面检测

表面检测多用于检测产品或部件的是否存在各类缺陷,如是否有划痕、不平等等问题。

为了便于理解,我们把机器视觉功能总结为检测、测量、识别和定位四大功能。基于这些功能,配合机电或机器人等设备,并在算法和软件上进行开发,可为各行业智能化升级和改造的需求提供解决方案。

1.3系统组成

视觉系统会包含硬件部分和软件部分。

硬件部分一般包括:工业相机(CCD 或 COMS相机)、镜头、光源。

软件部分一般包括:核心算法、图像识别及处理软件等。

这样的视觉系统基本可实现前述的测量、定位等功能。

在视觉系统的基础上,利用实现的视觉功能,加上机电和执行系统,就组成了人们所熟知的各类智能化设备或解决方案


二、机器视觉工作原理

2.1工作原理

机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。

采用机器视觉设备就是用机器替代人眼完成检测,具体实现的过程是用工业相机采集被检测器件的图像,而这个采集的过程可以说是机器视觉最为重要的一个环节了,因为要将被采集器件需要检测的特征全部都体现出来,所以如何采集图像需要不断地根据器件的特征调整光源以及相机的参数,确保能够采集到准确的图像需要不断地进行调整。

当然这个时候是模拟量,然后利用专业的图像处理软件将模拟信号转化为数字信号;再对其进行运算,抽取目标的待检测特征,比如说颜色、器件表面是否有划痕、规格大小是否合格、表面涂料是否均匀等等;输出结果,反馈到机械端对于器件进行分检,将不合格器件挑选出来。

一般来说,机器视觉设备工作原理就是把机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。机器人视觉通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。

2.2 工作流程

1、首先通过工件定位检测器检测物体是否在移动或靠近相机系统的视场中心。如果在该范围内,则将触发脉冲信号发送到图像采集部分。

2、图像获取部分根据设计人员预先设置的步骤和延迟,将启动脉冲发送到相机和照明系统。

3、照相机停止当前扫描并重新开始新的帧扫描,或者照相机在开始脉冲到达之前处于等待状态,并在开始脉冲到达之后开始帧扫描。

4、如果采用的策略是曝光策略,则应在相机开始新的帧扫描之前打开曝光机制,并可以根据使用要求预先设置曝光时间。

5、如果使用曝光策略,则需要使用另一个启动脉冲来打开照明,灯光的开启时间应与相机的曝光时间匹配。

6、照相机曝光后,正式开始扫描和输出一帧图像。

7、图像获取部分接收模拟视频信号并通过A/D将其数字化,或直接接收由摄像机数字化的数字视频数据。

8、图像获取部分将数字图像信息存储在缓冲器,处理器或计算机存储器中,以进行图像处理和显示。

9、处理器或计算机处理,分析和识别图像以获得测量结果或逻辑控制值。

10、根据计算机给出的处理结果,控制流水线的运动,执行定位并纠正运动中的误差。


三、数字图像处理传统算法

3.1 直方图均衡化

直方图均衡化是一种常见的图像增强技术,用于提高图像的对比度和亮度分布。该方法通过对图像的像素值进行重新分配,使得图像的直方图均匀分布,从而增强图像的细节和对比度。 具体步骤如下:

  1. 统计图像的像素值分布,得到图像的直方图。
  2. 计算直方图的累积分布函数,得到每个像素值对应的累积概率值。
  3. 将累积概率值乘以像素值的最大值,得到新的像素值。
  4. 将新的像素值替换原来的像素值,得到直方图均衡化后的图像。 直方图均衡化可以有效地增强图像的对比度和细节,但是也可能会使得图像出现过度增强的情况,因此需要根据具体的应用场景进行调整和优化。 直方图均衡化在数字图像处理、计算机视觉和图像分析等领域有广泛的应用,例如医学影像处理、遥感图像处理、人脸识别和图像检索等。

3.2 图像滤波

图像滤波算法是图像处理中常用的一种技术,用于去除图像中的噪声、平滑图像、增强图像细节等。常用的图像滤波算法包括以下几种:

  1. 均值滤波:用于平滑图像,通过计算像素周围的平均值来代替当前像素值。
  2. 中值滤波:用于去除椒盐噪声等,通过选取像素周围的中值来代替当前像素值。
  3. 高斯滤波:用于平滑图像和去除噪声,通过对像素周围的权值进行加权平均来代替当前像素值。
  4. 双边滤波:用于平滑图像和去除噪声,可以保留图像细节,通过考虑像素间的空间距离和像素值相似度进行加权平均。
  5. Laplacian滤波:用于增强图像轮廓和边缘,通过计算像素周围的二阶导数来代替当前像素值。
  6. Sobel滤波:用于检测图像中的边缘,通过计算像素周围的一阶导数来代替当前像素值。 图像滤波算法可以根据具体的应用场景进行选择和组合使用,以达到满足不同需求的效果。例如,在医学影像处理中,常用高斯滤波和均值滤波来去除噪声和平滑图像;在计算机视觉中,常用Sobel滤波和Laplacian滤波来检测图像中的边缘和轮廓。

3.3 图像锐化

图像锐化是一种常见的图像增强技术,用于增强图像的细节和对比度,使图像更加清晰和鲜明。常见的图像锐化算法包括以下几种:

  1. Laplacian算子:通过计算像素周围的二阶导数来检测图像中的边缘和细节,并对图像进行增强。
  2. Sobel算子:通过计算像素周围的一阶导数来检测图像中的边缘和细节,并对图像进行增强。
  3. 高斯拉普拉斯算子:通过对图像进行高斯滤波和Laplacian算子操作来增强图像的细节和对比度。
  4. Unsharp Masking算法:通过对图像进行高斯滤波和原始图像的差分操作来增强图像的细节和对比度。
  5. 双边滤波:通过考虑像素间的空间距离和像素值相似度进行加权平均,以增强图像的细节和对比度。 图像锐化算法可以根据具体的应用场景进行选择和组合使用,以达到满足不同需求的效果。例如,在数字图像处理中,常用Laplacian算子和Sobel算子来增强图像的边缘和细节;在计算机视觉中,常用高斯拉普拉斯算子和Unsharp Masking算法来增强图像的对比度和细节。

3.4 图像去噪

图像去燥是一种常见的图像处理技术,用于去除图像中的噪声,提高图像的质量和清晰度。常用的图像去燥算法包括以下几种:

  1. 均值滤波:通过计算像素周围的平均值来代替当前像素值,从而平滑图像并去除噪声。
  2. 中值滤波:通过选取像素周围的中值来代替当前像素值,从而去除椒盐噪声等。
  3. 高斯滤波:通过对像素周围的权值进行加权平均来代替当前像素值,从而平滑图像并去除噪声。
  4. 双边滤波:通过考虑像素间的空间距离和像素值相似度进行加权平均,从而保留图像的细节并去除噪声。
  5. 小波变换:通过对图像进行小波分解和重构,从而去除噪声并保留图像的细节。 图像去燥算法可以根据具体的应用场景进行选择和组合使用,以达到满足不同需求的效果。例如,在医学影像处理中,常用高斯滤波和均值滤波来去除噪声和平滑图像;在计算机视觉中,常用小波变换和双边滤波来去除噪声并保留图像的细节。

在图像处理中,噪声指的是由各种因素引入的干扰信号或随机扰动,使得图像中的像素值出现非预期的变化。噪声可以由多种原因引起,包括传感器噪声、信号传输过程中的干扰、电磁辐射、环境条件等。

常见的图像噪声类型包括:

  1. 高斯噪声:由于传感器本身的电子噪声以及环境中的电磁辐射等因素引起的随机噪声,其分布呈正态分布。
  2. 椒盐噪声:随机的黑白像素点,模拟传感器中的错误读数或信号传输中的丢失问题。
  3. 斑点噪声:不规则的亮度变化或者彩色斑块,通常由于传感器故障或损坏引起。
  4. 泊松噪声:在低照度条件下,由于光子统计的随机性引起的噪声。

去噪的目标是通过采用适当的方法来降低或消除这些噪声,以恢复图像的清晰度和细节,并提高图像质量。不同类型的噪声需要针对性地采用不同的去噪方法,以达到最佳的去噪效果。

3.5 图像阈值分割

图像阈值分割是一种常见的图像处理技术,用于将图像分成不同的区域,以便进行后续的处理和分析。常用的图像阈值分割算法包括以下几种:

  1. 全局阈值法:通过设定一个全局的阈值,将图像分成两个区域,一个是高于阈值的区域,另一个是低于阈值的区域。

  2. 局部阈值法:通过在图像中选取不同的局部区域,并设定相应的阈值,将图像分成不同的区域。

  3. 自适应阈值法:通过考虑像素周围的邻域信息,并根据像素的灰度值来自适应地设定阈值,将图像分成不同的区域。

  4. 基于梯度的阈值法:通过计算图像的梯度值,并设定相应的阈值,将图像分成不同的区域。

  5. 基于聚类的阈值法:通过对图像中的像素进行聚类,并设定相应的阈值,将图像分成不同的区域。

    图像阈值分割算法可以根据具体的应用场景进行选择和组合使用,以达到满足不同需求的效果。例如,在计算机视觉中,常用全局阈值法和自适应阈值法来将图像分成不同的区域,以便进行目标检测和跟踪;在数字图像处理中,常用基于聚类的阈值法和基于梯度的阈值法来对图像进行分割和分析。

3.6 图像区域生长

图像区域生长是一种常见的图像处理技术,用于将图像中的像素按照一定的规则进行分组,以便进行后续的处理和分析。常用的图像区域生长算法包括以下几种:

  1. 基于相似度的区域生长:通过比较像素之间的相似度,将相似度高的像素分组成区域。
  2. 基于邻域的区域生长:通过选取一个种子点,并考虑周围像素的相似度和距离信息,将像素分组成区域。
  3. 基于阈值的区域生长:通过设定一个阈值,将与种子点相似度高于阈值的像素分组成区域。
  4. 基于形状的区域生长:通过考虑像素形状和拓扑信息,将像素分组成具有相同形状和结构的区域。 图像区域生长算法可以根据具体的应用场景进行选择和组合使用,以达到满足不同需求的效果。例如,在医学影像处理中,常用基于相似度的区域生长和基于邻域的区域生长来分割图像中的组织和病变区域;在计算机视觉中,常用基于形状的区域生长来对目标进行分割和识别。

区域生长(Region Growing)是一种基于像素的图像分割方法,用于将图像划分为具有相似特征的连通区域。该方法的基本思想是从一个或多个种子点开始,逐步生长将与种子点相似的像素合并到同一个区域中,直到达到某个停止准则。

区域生长算法的步骤如下:

  1. 种子点选择:首先需要选择一个或多个种子点作为生长的起点。种子点可以手动选择,也可以根据预定义的条件自动选择。
  2. 相似性准则:确定像素之间的相似性度量标准。常见的相似性度量包括像素之间的灰度值差异、颜色差异、纹理特征等。可以使用阈值、欧氏距离、相关系数等方法进行相似性度量。
  3. 区域生长:从种子点开始,逐渐扩展区域。一般从种子点出发,对相邻的像素进行判断,如果满足相似性准则,则将其合并到区域中。可以使用递归、队列或堆栈等方式进行区域生长的实现。
  4. 停止准则:定义一个停止准则来控制区域生长的终止条件。停止准则可以是区域大小、像素相似性度量等方面的条件,用于判断是否将当前像素合并到区域中。

区域生长算法的优点是简单易实现,能够有效地将具有相似特征的像素聚合到一起,但也存在一些问题,如对噪声敏感,种子点选择不当可能导致分割结果不理想等。因此,在使用区域生长算法时需要根据实际情况进行参数调整和优化。

3.7 图像边缘检测

图像边缘检测是一种常见的图像处理技术,用于检测图像中的边缘和轮廓,以便进行后续的处理和分析。常用的图像边缘检测算法包括以下几种:

  1. 基于梯度的边缘检测:通过计算图像中像素的梯度值,并选取梯度值较大的像素作为边缘点,从而检测图像中的边缘。

  2. 基于拉普拉斯算子的边缘检测:通过计算图像中像素的拉普拉斯值,并选取拉普拉斯值较大的像素作为边缘点,从而检测图像中的边缘。

  3. 基于Canny算法的边缘检测:通过对图像进行高斯滤波、计算梯度、非极大值抑制和双阈值检测等步骤,从而检测图像中的边缘。

  4. 基于边缘增强的边缘检测:通过对图像进行边缘增强的操作,从而使边缘更加明显和突出,从而检测图像中的边缘。

图像边缘检测算法可以根据具体的应用场景进行选择和组合使用,以达到满足不同需求的效果。例如,在计算机视觉中,常用Canny算法和基于梯度的边缘检测来检测目标的边缘和轮廓;在数字图像处理中,常用基于拉普拉斯算子的边缘检测和基于边缘增强的边缘检测来对图像进行分析和处理。

3.8 图像形态学分割

图像形态学分割是一种常见的图像处理技术,它基于数学形态学理论,通过对图像中的形态学操作来实现图像的分割和分析。常用的图像形态学分割算法包括以下几种:

  1. 膨胀:通过对图像中的像素进行膨胀操作,从而将像素进行扩张并且连接成区域,用于分割图像中的目标。
  2. 腐蚀:通过对图像中的像素进行腐蚀操作,从而将像素进行缩小并且分离成区域,用于分割图像中的背景。
  3. 开运算:通过先对图像进行腐蚀操作,再对腐蚀后的图像进行膨胀操作,从而去除图像中的噪声和细小的物体,用于分割图像中的对象。
  4. 闭运算:通过先对图像进行膨胀操作,再对膨胀后的图像进行腐蚀操作,从而填补图像中的空洞和断裂,用于分割图像中的对象。
  5. 形态学梯度:通过对图像进行膨胀和腐蚀操作,然后将膨胀后的图像与腐蚀后的图像进行差分,从而检测图像中的边缘和轮廓,用于分割图像中的对象。 图像形态学分割算法可以根据具体的应用场景进行选择和组合使用,以达到满足不同需求的效果。例如,在医学影像处理中,常用开运算和闭运算来对图像中的组织和病变区域进行分割和分析;在计算机视觉中,常用形态学梯度来检测目标的边缘和轮廓,以便进行目标跟踪和识别

3.9 灰度共生矩阵

灰度共生矩阵(Gray Level Co-occurrence Matrix,GLCM)是一种用于描述图像纹理信息的统计方法,它计算了图像中不同灰度级的像素之间的空间关系,并且提取出了一系列的纹理特征。常用的灰度共生矩阵特征包括以下几种:

  1. 能量:反映了图像纹理的均匀程度,能量越大表示图像纹理越均匀。

  2. 对比度:反映了图像纹理的对比程度,对比度越大表示图像纹理越清晰。

  3. 相关性:反映了图像纹理的相关程度,相关性越大表示图像纹理越相似。

  4. 熵:反映了图像纹理的随机性,熵越大表示图像纹理越随机。

  5. 同质性:反映了图像纹理的均匀度,同质性越大表示图像纹理越均匀。

通过计算灰度共生矩阵及其特征,可以有效地描述图像的纹理信息,并且用于图像分类、目标识别、医学图像分析等领域。在实际应用中,通常需要多个特征同时进行计算和分析,以达到更加准确和全面的图像描述和分析。

3.10 形态学特征提取

形态学特征提取是一种基于形态学理论的图像处理技术,它通过对图像进行形态学操作,提取图像中的形态学特征,用于图像分类、目标识别、医学图像分析等领域。常用的形态学特征包括以下几种:

  1. 面积:表示目标的大小,可以通过对图像进行二值化处理和连通区域分析来计算。
  2. 周长:表示目标的边缘长度,可以通过对图像进行边缘检测和跟踪来计算。
  3. 紧凑度:表示目标的紧密程度,是面积和周长的平方之比,用于区分不同形状的目标。
  4. 等效直径:表示目标的大小和形状,是与目标面积相等的圆的直径,可以通过对目标的面积进行计算得到。
  5. 偏心率:表示目标形状的偏心程度,是目标离心率的平方根。
  6. 偏移度:表示目标形状的偏移程度,是目标中心距离其最小外接矩形中心的距离。 通过计算这些形态学特征,可以有效地描述图像中的形态学信息,并且用于图像分类、目标识别、医学图像分析等领域。在实际应用中,通常需要多个特征同时进行计算和分析,以达到更加准确和全面的图像描述和分析。

3.11 深度学习特征提取

深度学习特征提取是一种基于深度神经网络的图像处理技术,它通过训练深度神经网络,学习图像中的特征表示,并且提取出一系列的高级特征,用于图像分类、目标识别、场景理解等领域。常用的深度学习特征提取方法包括以下几种:

  1. 卷积神经网络(Convolutional Neural Network,CNN):是一种用于图像分类和目标识别的深度神经网络,它通过卷积和池化操作来学习图像中的特征表示,并且提取出一系列的高级特征。
  2. 循环神经网络(Recurrent Neural Network,RNN):是一种用于序列数据处理的深度神经网络,它通过循环连接来学习序列数据中的特征表示,并且提取出一系列的时序特征。
  3. 自编码器(Autoencoder,AE):是一种用于无监督学习的深度神经网络,它通过重构输入数据来学习数据的潜在特征表示,并且提取出一系列的低维特征。 通过深度学习特征提取,可以有效地学习和提取图像中的特征表示,避免了传统图像处理方法中需要手工设计特征的繁琐过程,同时可以获得更加准确和高效的特征表示,提高了图像处理的性能和效果。在实际应用中,通常需要根据具体的任务和数据特点,选择合适的深度学习模型和特征提取方法,以达到最佳的效果。

3.12 基于模板匹配的目标检测

基于模板匹配的目标检测是一种基于图像相似度的目标检测方法,它通过将目标图像与已知的模板图像进行匹配,来检测目标是否存在。常用的基于模板匹配的目标检测方法包括以下几种:

  1. 交叉相关匹配(Cross-Correlation Matching):是一种基于像素点相似度的匹配方法,它通过计算目标图像和模板图像的像素点之间的相似度来进行匹配,从而找到最佳的匹配位置。
  2. 归一化交叉相关匹配(Normalized Cross-Correlation Matching):是在交叉相关匹配的基础上进行改进的方法,它通过对像素点进行标准化处理,从而避免了亮度和对比度变化的影响,提高了匹配的准确性。
  3. 相位相关匹配(Phase Correlation Matching):是一种基于频率域的匹配方法,它通过将目标图像和模板图像转换到频率域中进行匹配,从而避免了图像旋转和缩放的影响,提高了匹配的稳定性。 通过基于模板匹配的目标检测,可以实现对目标的快速检测和定位,适用于单个目标或目标数量较少的场景。在实际应用中,通常需要根据具体的任务和场景特点,选择合适的匹配方法和匹配策略,以达到最佳的检测效果。

3.13 基于灰度共生矩阵的特征提取(简单了解)

基于灰度共生矩阵(Gray-Level Co-occurrence Matrix, GLCM)的特征提取是一种常用的图像特征提取方法,它通过计算图像中像素之间的灰度级别共生矩阵,提取出一系列表征图像纹理和结构的特征。常用的GLCM特征包括以下几种:

  1. 对比度(Contrast):表示图像中相邻像素灰度级别之间的差异程度,对应共生矩阵中灰度级别之间的对角线元素之和。
  2. 能量(Energy):表示图像中像素灰度级别出现的频率,对应共生矩阵的归一化总和。
  3. 相关度(Correlation):表示图像中相邻像素之间的线性相关程度,对应共生矩阵中灰度级别之间的相关系数。
  4. 熵(Entropy):表示图像中像素灰度级别的不确定度或信息量,对应共生矩阵的信息熵。
  5. 逆差矩(Inverse Difference Moment):表示图像中相邻像素灰度级别之间的相似程度,对应共生矩阵中灰度级别之间的倒数差分矩阵。 通过计算这些GLCM特征,可以提取出图像中的纹理和结构信息,用于图像分类、目标识别、医学图像分析等领域。在实际应用中,通常需要根据具体的任务和数据特点,选择合适的GLCM特征和计算方法,以达到最佳的特征表示和分析效果。

3.14 基于特征的配准

基于特征的配准是一种常用的图像配准方法,它通过提取图像中的特征点或特征描述子,并利用它们之间的相对位置关系来实现图像的配准。常用的基于特征的配准方法包括以下几种:

  1. SIFT配准:SIFT(Scale-Invariant Feature Transform)是一种基于尺度不变特征的配准方法,它通过提取关键点和描述子,并使用RANSAC算法来估计变换矩阵,实现图像的配准。
  2. SURF配准:SURF(Speeded Up Robust Features)是一种基于加速特征提取和匹配的配准方法,它通过提取关键点和描述子,并使用FLANN算法来进行快速匹配和变换估计。
  3. ORB配准:ORB(Oriented FAST and Rotated BRIEF)是一种基于快速特征提取和描述子的配准方法,它通过使用FAST角点检测器和BRIEF描述子来提取图像特征,并使用RANSAC算法来估计变换矩阵,实现图像的配准。 通过基于特征的配准,可以实现对图像的准确配准和对齐,适用于图像拼接、医学图像对比等领域。在实际应用中,通常需要根据具体的任务和数据特点,选择合适的特征提取和匹配方法,并进行参数调整和优化,以达到最佳的配准效果。

3.15 基于相似性度量的配准

基于相似性度量的配准是一种基于图像相似度的配准方法,它通过计算待配准图像和目标图像之间的相似性度量,来实现图像的配准。常用的基于相似性度量的配准方法包括以下几种:

  1. 均方误差(Mean Square Error, MSE):是一种常用的图像相似性度量方法,它通过计算待配准图像和目标图像之间像素值之间的均方误差来衡量它们之间的相似度。
  2. 互相关系数(Cross Correlation, CC):是一种常用的图像相似性度量方法,它通过计算待配准图像和目标图像之间的互相关系数来衡量它们之间的相似度。
  3. 皮尔逊相关系数(Pearson Correlation Coefficient, PCC):是一种常用的图像相似性度量方法,它通过计算待配准图像和目标图像之间的皮尔逊相关系数来衡量它们之间的相似度。
  4. 归一化互相关系数(Normalized Cross Correlation, NCC):是一种常用的图像相似性度量方法,它通过对待配准图像和目标图像进行零均值归一化,从而避免了亮度和对比度变化的影响,提高了匹配的准确性。 通过基于相似性度量的配准,可以实现对图像的粗略配准和对齐,适用于图像初步对齐、图像纠正等领域。在实际应用中,通常需要根据具体的任务和数据特点,选择合适的相似性度量方法,并进行参数调整和优化,以达到最佳的配准效果。

3.16基于形变模型的配准

基于形变模型的配准是一种基于形变模型的配准方法,它通过建立待配准图像和目标图像之间的形变模型,来实现图像的配准。常用的基于形变模型的配准方法包括以下几种:

  1. 弹性形变配准:弹性形变配准是一种基于物理模型的配准方法,它通过建立弹性形变模型,对待配准图像进行形变,使其与目标图像对齐。
  2. B样条形变配准:B样条形变配准是一种基于控制点的配准方法,它通过建立B样条形变模型,利用控制点来控制待配准图像的形变,使其与目标图像对齐。
  3. Thin-Plate Splines形变配准:Thin-Plate Splines形变配准是一种基于物理模型的配准方法,它通过建立Thin-Plate Splines形变模型,对待配准图像进行形变,使其与目标图像对齐。 通过基于形变模型的配准,可以实现对图像的精确配准和对齐,适用于医学图像配准、遥感图像配准等领域。在实际应用中,通常需要根据具体的任务和数据特点,选择合适的形变模型和优化算法,并进行参数调整和优化,以达到最佳的配准效果。

3.17 图像压缩算法

图像压缩算法是一种将图像数据通过一定的压缩技术,将其体积缩小的算法。常用的图像压缩算法有以下几种:

  1. 无损压缩算法:无损压缩算法通过去除图像数据中的冗余信息来进行压缩,但不会改变图像的像素值和质量。常用的无损压缩算法有:LZW压缩、Huffman编码、RLE编码、差分编码等。
  2. 有损压缩算法:有损压缩算法通过舍弃图像数据中的一些信息来进行压缩,虽然图像的体积可以被大幅缩小,但可能会导致图像质量的损失。常用的有损压缩算法有:JPEG、JPEG2000、WebP、BPG、HEVC等。
  3. 混合型压缩算法:混合型压缩算法是一种结合了无损和有损压缩算法的压缩方法,可以在压缩图像时保证图像质量的同时,达到很高的压缩比。常用的混合型压缩算法有:PNG、GIF、TIFF 等。 选择合适的图像压缩算法需要考虑压缩比、压缩速度、图像质量等多个因素,不同的应用场景和需求会需要不同的压缩算法。在实际应用中,需要根据具体的需求和数据特点,选择合适的压缩算法,以达到最佳的压缩效果。

四、机器视觉应用领域

4.1 农业领域

机器视觉是农业中许多自动化和机器人应用的重要部分。 拖拉机自动驾驶,精确地进行田地种植,甚至可以精确到具体植物。 无人驾驶飞机会从空中记录土壤和农作物的状况。机器人协助挤奶,喂养和察看动物。 它们还用于温室中以进行收割和质量监控。 种子和农产品的质量和等级检验也通过机器视觉技术进行,这就是今天的农业。

当今农业发展的挑战:

  • 满足不断增长的世界人口
  • 保护环境
  • 遵循政府法规
  • 应对快速变化的天气状况
  • 高效使用有限的水和土地资源
  • 高生产和人工成本
  • 缺乏有经验的工作者
  • 不断增加的消费者需求

 

4.2 物流和仓库自动化

物流任务的复杂性和速度要求在不断提高。对于许多现代生产商来说,产品识别和可追溯性作为必要条件,重要性越来越高。商品上会印刷、标记、标刻、蚀刻或标示各种条形码、二维码、字符和符号,以便识别内容并提供重要制造信息。此外,还需要在越来越短的时间内对越来越多的商品进行拆包、检测、包装和分发。

现代图像处理软件为读取字符、代码和符号提供了所有必要的方法和技术,无论它们以何种方式应用。例如,在完全没有代码的情况下,也可以通过视觉纹理特征和颜色来识别物体。

机器视觉的使用可以为内部物流和仓库自动化的许多流程带来效益。仓库流程可以通过机器视觉系统实现部分或完全自动化。

 

4.3 消费电子行业

消费电子行业一直是机器视觉的主要应用领域,消费电子生产过程中需要大量种类繁多、小尺寸、高精度的元器件,因此不可避免地需要面对复杂的生产工艺、高精度的检测要求、高成本的人力等问题,而机器视觉正在高精度引导定位贴合、产品二维码识别、组装检查等工序中发挥其超越人眼的巨大优势。

 

4.4 新能源行业

发展光伏行业是我国能源结构低碳化转型的重要举措。在太阳能电池板的生产制造过程中,可能出现微裂纹、断栅、污染、电池劣化、扩散不均、虚印等问题,这些缺陷的存在可能会影响光伏电池的光电转换效率,降低电池使用寿命,影响光伏系统稳定性。传统的成像系统较难识别出这些缺陷问题,需要采用EL(电致发光)或PL(光致发光)定位生产环节中出现的问题,为产品质量提供可靠的保证。

 

4.5 半导体行业

随着芯片产业规模的不断扩张,半导体行业的视觉检测需求也在提升,在微小且高精度的半导体加工过程中,硅片检测、晶圆封装测试、元件放置、表面贴装、锡膏检测等等都需要借助机器视觉来完成。机器视觉正凭借其高精度、高速、高准确率、非接触性的优势加速企业半导体产线的运行,降低成本,提升企业效益。

 

4.6 汽车行业

在汽车制造过程中,安全是不容忽视的问题,即便是很小的故障也可能会造成灾难性的后果,然而据估计,平均每辆汽车就由上万个不可拆卸的独立零件组成,若要在大量的零件制造和复杂的装配流程中保证低故障率,且能够对故障原因溯源,那仅通过人工实现是非常困难的。目前,各大汽车制造厂商均已将机器视觉技术投入到产线上来,利用机器视觉系统对零件进行定位、测量、识别、检查,严格把控生产质量。

 

4.7 交通行业

“十四五”交通规划的发布将智慧交通推上新的发展道路,而机器视觉正在不断推进智慧交通发展的进程。机器视觉技术可以识别车牌、道路违章检测,分析路况信息等,并对重点枢纽实现全天候、全覆盖、全方位、全过程的实时监控,为交通安全保驾护航。

 

4.8 医药行业

医药行业是以质量为先的民生行业,因此,保障医药行业的安全性尤为重要。在医疗诊断领域,借助机器视觉系统对医学影像进行分析处理,可以减少误检率,提升诊断效率。在制药行业,机器视觉可以应用在药品外观缺陷检测、包装缺陷检测、注射剂输液产品的可见异物及封口缺陷检测等方面,提升药品质量检测的效率和质量。

 


总结

机器视觉是一种用于模拟人类视觉能力的技术,它通过各种图像处理和模式识别算法,使计算机能够感知、理解、分析和解释图像或视频数据。机器视觉可以应用于各个领域,其作用包括但不限于以下几个方面:

1. 自动检测和监控:机器视觉可以用于自动检测和监控各种对象,例如交通监控、安全监控、工业生产过程监控等。它可以实时探测异常情况,并进行预警和报警。

2. 图像识别和分类:机器视觉可以用于对图像中的对象进行识别和分类,例如人脸识别、车辆识别、商品识别等。它可以在图像库中快速找到目标对象,并进行精确的辨认。

3. 视觉引导和导航:机器视觉可以用于视觉引导和导航系统,例如自动驾驶、无人机导航等。它可以通过对环境中的图像进行实时分析和处理,实现自主导航和路径规划。

4. 增强现实和虚拟现实:机器视觉可以用于增强现实和虚拟现实技术,例如在游戏、教育、医疗等领域中提供更加沉浸式和交互式的体验。

5. 质量控制和检验:机器视觉可以用于工业生产过程中的质量控制和检验,例如产品表面缺陷检测、尺寸测量、产品装配等。它可以对大量产品进行高速、高精度的检测和判断。

总体而言,机器视觉的作用是利用计算机视觉技术,实现对图像或视频数据的自动处理和分析,提高工作效率、减少人力成本,并在各个领域中带来更多的应用和创新。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

取加若则_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值