百面机器学习总结笔记(第五章 非监督学习)

百面机器学习总结笔记

第五章 非监督学习

第1节 K均值学习

场景描述
在这里插入图片描述
在这里插入图片描述
知识点
K 均值聚类算法,ISODATA 算法, EM 算法( Expectation-Maximization Algorithm ,最大期望算法)

问题:简述K均值算法的具体步骤

分析与解答
在这里插入图片描述

在这里插入图片描述
图 5.2 是 K-means 算法的一个迭代过程示意图 。 首先,给定二维空间上的一些样本点(见国 5.2 (a) ) , 直观上上这些点可以被分成两类, 接下来,初始化两个中心点(圄 5.2( b)的棕色和黄色叉子代表中心点), 并根据中心点的位置计算每个样本所属的簇(圄 5.2 ( c )用不同颜色表示),然后根据每个簇中的所有点的平均值计算新的中心点位置( 见圄 5.2(d )),图 5.2 (e)和图 5.2 (f) 展示了新轮的迭代结果, 在经过两轮的迭代之后,算法基本收敛 。

问题:K 均值算法的优缺点是什么?如何对其进行调优?

分析与解答
优缺点
在这里插入图片描述

算法调优
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值