百面机器学习总结笔记(第五章 非监督学习)
百面机器学习总结笔记
第五章 非监督学习
第1节 K均值学习
场景描述
知识点
K 均值聚类算法,ISODATA 算法, EM 算法( Expectation-Maximization Algorithm ,最大期望算法)
问题:简述K均值算法的具体步骤
分析与解答
图 5.2 是 K-means 算法的一个迭代过程示意图 。 首先,给定二维空间上的一些样本点(见国 5.2 (a) ) , 直观上上这些点可以被分成两类, 接下来,初始化两个中心点(圄 5.2( b)的棕色和黄色叉子代表中心点), 并根据中心点的位置计算每个样本所属的簇(圄 5.2 ( c )用不同颜色表示),然后根据每个簇中的所有点的平均值计算新的中心点位置( 见圄 5.2(d )),图 5.2 (e)和图 5.2 (f) 展示了新轮的迭代结果, 在经过两轮的迭代之后,算法基本收敛 。
问题:K 均值算法的优缺点是什么?如何对其进行调优?
分析与解答
优缺点
算法调优