百面机器学习总结笔记(第九章 前向神经网络)

百面机器学习总结笔记

第九章 前向神经网络

在这里插入图片描述

多层感知机与布尔函数

场景描述
在这里插入图片描述
知识点
数理逻辑 深度学习 神经网络

问题1 多层感知机表示异或逻辑时最少需要几个隐含层(仅考虑二元输入)?
分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题2 如何只使用一个隐层,需要多少隐节点能够实现包含n元输入的任意布尔函数?

分析与解答
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

问题3 考虑多层的情况,实现包含n元输入的任意布尔函数最少需要多少个网络节点和网络层?

分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

深层神经网络的激活函数

场景描述
在这里插入图片描述
知识点
微积分 深度学习 激活函数

问题1 写出常用的激活函数及其导数

分析与解答
在这里插入图片描述
在这里插入图片描述
问题2 为什么Sigmoid 和 Tanh 激活函数会导致梯度消失的现象?

分析与解答
在这里插入图片描述
在这里插入图片描述
问题3 Relu系列的激活函数相对于Sigmoid和Tanh激活函数的优点是什么? 他们有什么局限性以及如何改进
分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多层感知机的反向传播算法

场景描述
在这里插入图片描述
在这里插入图片描述
知识点
线性代数 微积分 深度学习

问题1 :写出多层感知机的平方误差和交叉熵损失函数

分析与解答
在这里插入图片描述
在这里插入图片描述
问题2 根据问题1中定义的损失函数,推导各层参数更新的梯度计算公式

分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
问题3 平方误差损失函数和交叉熵损失函数分别适合什么场景
分析与解答
在这里插入图片描述

神经网络训练技巧

场景描述
在这里插入图片描述
知识点
概率与统计 深度学习
问题1 神经网络训练时是否可以将全部参数初始化为0?

分析与解答
在这里插入图片描述
问题2 为什么Dropout可以抑制过拟合?它的工作原理和实现?

分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题3 批量归一化的基本动机与原理是什么?在卷积神经网络中如何使用?

分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

深度卷积神经网络

场景描述
在这里插入图片描述
知识点
图像处理 深度学习 自然语言处理
问题1 卷积操作的本质特征包括稀疏交互参数共享,具体解释这两种特征及其作用。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

问题2 常用的池化操作有哪些?池化的作用是什么?
分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
问题3 卷积神经网络如何用于文本分类任务?
分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

深度残差网络

场景描述
在这里插入图片描述
在这里插入图片描述
知识点
线性代数 深度学习
问题 ResNet提出的背景和核心理论是什么?
分析与解答
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值