百面深度学习:第一章 卷积神经网络

问题1 简述卷积的基本操作,并分析其与全连接层的区别

我的理解:卷积层就是通过卷积核的操作获得更加明显的高层语义特征,但是数据结构类型没有变。全连接就是输出和每个输入连接。权值共享就是由于是卷积核操作所在存在权值一样,卷积核就差不多是权值
全连接类似于多层感知机,输出层的每个节点会与输入层相连接。
卷积层是通过特定数目的卷积核(又称为滤波器)对输入的多通道特征图进行扫描和运算,从而得到多个拥有更高层语义信息的输出特征图(通道数目等于卷积核个数)。
权值共享:卷积核的滑动窗口机制,使得输出层上不同位置的节点与输入层的连接权值都是一样的(即卷积核参数)。而在全连接层中,不同节点的连接权值是不同的。
局部连接和权值共享使得卷积操作能在输出数据中大致保持输入数据的结构信息。

问题2 在卷积神经网络中,如何计算各层感受野的大小

感受野的定义是,对于某层输出特征图上的某个点,在卷积神经网络的原始输入数据上能影响到这个点的取值的区域。
我的理解:感受野会受到上一层的影响以及这一层卷积核与步长的影响。全连接的感受野是整个输入数据全域。

问题3 卷积层的输出尺寸、参数量和计算量

参数量:主要取决于每个卷积核的参数量以及卷积核的个数。
计算量:由卷积核在每个滑动窗口内的计算量以及整体的滑动次数决定。

问题1 简述分层卷积及其应用场景

在普通卷积操作中,一个卷积核对应输出特征图的一个通道,而每个卷积核又会作用在输入特征图的所有通道(即卷积核的通道数等于特征图的通道数),因此最终输出特征图的每个通道都与输入特征图的所有通道相连接。
分层卷积,其实就是将输入通道和输出通道都划分为同样的组数,然后仅让处于相同组号的输入通道和输出通道相互进行全连接。
最初是为了将计算和存储分配到多个GPU上去。

问题2 简述转置卷积的主要思想以及应用场景

普通的卷积操作可以形式为一个矩阵乘法运算。
转置卷积能够将普通卷积中输入到输出尺寸的变换逆反过来。
转置卷积的信息正向传播与普通卷积的误差反向传播所用的矩阵相同。
普通卷积和转置卷积所处理的基本任务不同。前者主要用于做特征提取,倾向于压缩特征图尺寸,后者主要用于对特征图进行扩张或上采样。
代表场景:语义分割/实例分割任务。编码器。生成对抗网络。

问题3 简述空洞卷积的设计思路

在语义分割任务中,一般需要先缩小特征图尺寸,做信息聚合;然后复制到之前的尺寸,最终返回与原始图像尺寸相同的分割结果图。
常见的语义分割模型,一般通过池化操作来扩大特征图的感受野,但会降低特征图的分辨率,丢失一些信息,导致后续的上采样操作无法还原一些细节,从而限制最终分割精度的提升。
如何不通过池化扩大感受野:空洞卷积就是在标准卷积核中注入空洞,以增加卷积核的感受野。

问题4 可变形卷积旨在解决哪类问题

可变形卷积在卷积核的每个采样点上添加了一个可学习的偏移量,让采样点不再局限于规则的网格点。可变形卷积让网络具有了学习空间几何形变的能力。
适应物体在不同图片中出现的复杂几何形变。

AlexNet

首个实用性很强的卷积神经网络,其主要结构是堆砌的卷积层和池化层,最后在网络末端加上全连接层和Softmax层以处理多分类任务。
Relu作为激活函数,应用了Dropout和数据扩充,用了分组卷积。局部响应归一化模块。

VggNet

网络结构更加简单,使用小卷积核,可以在更少的网络参数,更小的计算量下获得同样的感受野和较大的网络深度。去掉了局部响应归一化模块。

GoogleNet/Inception-v1

深入探索网络结构的设计原则。提出了Inception结构,将之前网络中的大通道卷积层替换为由多个小通道卷积组成的多分支结构。能使网络稀疏化的同时,增强网络对多尺度特征的适应性。
改进:在计算比较大的卷积层之前,先使用1*1卷积对其通道进行压缩以减少计算量。从网络中间层拉出多条支线,连接辅助分类器,用于计算损失并进行误差反向传播,以缓解梯度消失问题。将第一个全连接层换成全局平均池化层。

ResNet

随着网络层数的加深,网络的训练误差和测试误差都会上升。这种现象称为网络的退化。在网络中构筑多条近道。

问题1 批归一化是为了解决什么问题?它的参数有什么意义?它在网络中一般放在什么位置?

问题:网络每一层需要不断适应输入数据的分布变化。网络前几层参数的更新,很可能会使得后几层的输入数据变得过大或者过小。
批归一化:确保网络中的各层,即使参数发生了变化,其输入/输出数据的分布也不能产生较大变化,从而避免发生内部协变量偏移现象。采用批归一化后,深度神经网络的训练更加稳定,对初始值不再那么敏感,可以使用较大学习率加速收敛。
放在激活层之前或之后还是有着较大的争议。

问题2 用于分类任务的卷积神经网络的最后几层一般是什么?在最近几年有什么变化?

前面若干层一般是卷积层、池化层等,但是网络末端一般是几层全连接层。
全连接层之前通常采用全局平均池化,可以提取全局信息:参数量和计算量大大降低,具有较好的可解释性。

问题3 卷积神经网络中的瓶颈结构和沙漏结构提出的初衷是什么?可用于解决哪些问题?

瓶颈结构的初衷是为了降低卷积层的计算量,即在计算比较大的卷积层之前先用一个1*1卷积来压缩卷积输入特征图的通道数目以减小计算量。在大卷积完成计算以后,根据实际需要进行复原。
沙漏结构:类似于瓶颈结构,尺度要更大,涉及层更多。类似于编码器和解码器结构。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值