虽然“安全大模型”(LLM 驱动的安全能力)的应用还处在早期阶段,但用户方面已经展现出较强的采购意愿,这样的现状主要来源于 LLM 涌现出的新兴能力在安全运营中实现降本增效的合理预期,以及用户内部创新研究的绩效牵引。
LLM 提升了交互性并极大的增加了可解释性和推理能力,“安全大模型”的出现有助于安全价值可视化与用户体验两方面实现质的飞跃。
“安全大模型”现阶段主要解决的是“人”的问题,聚焦在学习人的经验和模仿人的思维两方面,在单纯的攻防技术层面,尚未发现颠覆性的创新与应用。
高投入服务于高价值,现阶段由于我国数字化程度的不充分以及安全工作价值的不直观,高投入的LLM并不适用于所有安全场景,较高的投入产出比和较多的适用方向为“大模型+小模型”,即“安全调度官”。
“安全大模型”的应用主要集中在攻防对抗智能化、威胁狩猎深度化、安全知识科普化和安全运营效率化4个方面,少量安全专项能力应用,集中在数据分析和代码应用2个方面。
具备较大模型规模(大于等于60B)的“安全大模型”已经在数据分类分级中展现出强大的能力,有效降低了数据打标过程中的资源投人,基本替代了人力劳动,极大缩短了项目实施时间。
从全球范围来看,由于数字化建设程度和治理模式的区别,我国“安全大模型”的头部用户依然倾向于私有化部署方式,这就导致了供应商需要在“安全大模型”的资源投人、算力需求和应用性能之间作出权衡,但这也从侧面激励了供应商对预训练数据和指令调整的质量进行不断优化,来减少训练计算量和推理算力。
现阶段我国“安全大模型”的发展主要受制于算力资源紧张,长久来看则取决于安全法治、A基础研究和科技治理(开源、开放)的发展。
(本文转载的目的在于传递及网络分享,查阅报告原文请关注搜索“报告派”)