51nod 1079 中国剩余定理

基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
 收藏
 关注
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。
Input
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
Output
输出符合条件的最小的K。数据中所有K均小于10^9。
Input示例
3
2 1
3 2
5 3
Output示例
23

#include<stdio.h>
#define ll long long
int n;
//n个mi互质 
ll m[101];ll a[101];//m[]存放互质的数,a[]存放余数 
void e_gcd(ll a,ll b,ll &x, ll &y){//计算逆元 
	if(b==0){
		x=1;y=0;return;
	}
	e_gcd(b,a%b,x,y);
	ll temp=x;
	x=y;
	y=temp-a/b*y;
}
ll CRT(){
	ll M=1;
	for(int i=0;i<n;i++) M*=m[i];
	ll ret=0;
	for(int i=0;i<n;i++){
			ll x,y;
			ll tm=M/m[i];//计算Mi
			e_gcd(tm,m[i],x,y);//计算逆元x 
			ret=(ret+x*a[i]*tm)%M;//计算结果值 
	}
	return (ret+M)%M;
}
int main()
{
	scanf("%lld",&n);
		for(int i=0;i<n;i++)
		scanf("%lld%lld",&m[i],&a[i]);
	printf("%lld\n",CRT());
	return 0;
}


再贴个不互质也能求的模板

#include<stdio.h>
using namespace std;
#define ll long long
ll t;
ll a[15],b[15];//a[]模数,b[]余数 
ll e_gcd(ll a,ll b,ll &x,ll &y)
{
	if(b==0)
	{
		x=1;
		y=0;
		return a;
	}
	int ans=e_gcd(b,a%b,x,y);
	ll temp=x;
	x=y;
	y=temp-a/b*y;
	return ans;
}
ll lmes() {  
    ll M = a[0], R = b[0], x, y;  
    for (int i = 1; i < t; i++) {  
        int gcd=e_gcd(M, a[i], x, y);  
        if ((b[i] - R) % gcd) return 0; //无整数解,根据题意确定返回无解的值 
        x = (b[i] - R) / gcd*x % (a[i] / gcd);  
        R += x*M;
        M = M / gcd*a[i];  
	   R=(R%M+M)%M;
    }
    //以上,最后R就是符合同余方程的最小整数解,M是除数a[]的最小公倍数,孙子定理模板 
    return R;
}  
int main()
{
	scanf("%lld",&t);
		for(int i=0;i<t;i++)
		{ 
			scanf("%lld",&a[i]);
			scanf("%lld",&b[i]);
		}
		ll sum=lmes();
		printf("%lld\n",sum);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值