基准时间限制:1 秒 空间限制:131072 KB 分值: 0
难度:基础题
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。
Input
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10) 第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
Output
输出符合条件的最小的K。数据中所有K均小于10^9。
Input示例
3 2 1 3 2 5 3
Output示例
23
#include<stdio.h>
#define ll long long
int n;
//n个mi互质
ll m[101];ll a[101];//m[]存放互质的数,a[]存放余数
void e_gcd(ll a,ll b,ll &x, ll &y){//计算逆元
if(b==0){
x=1;y=0;return;
}
e_gcd(b,a%b,x,y);
ll temp=x;
x=y;
y=temp-a/b*y;
}
ll CRT(){
ll M=1;
for(int i=0;i<n;i++) M*=m[i];
ll ret=0;
for(int i=0;i<n;i++){
ll x,y;
ll tm=M/m[i];//计算Mi
e_gcd(tm,m[i],x,y);//计算逆元x
ret=(ret+x*a[i]*tm)%M;//计算结果值
}
return (ret+M)%M;
}
int main()
{
scanf("%lld",&n);
for(int i=0;i<n;i++)
scanf("%lld%lld",&m[i],&a[i]);
printf("%lld\n",CRT());
return 0;
}
再贴个不互质也能求的模板
#include<stdio.h>
using namespace std;
#define ll long long
ll t;
ll a[15],b[15];//a[]模数,b[]余数
ll e_gcd(ll a,ll b,ll &x,ll &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
int ans=e_gcd(b,a%b,x,y);
ll temp=x;
x=y;
y=temp-a/b*y;
return ans;
}
ll lmes() {
ll M = a[0], R = b[0], x, y;
for (int i = 1; i < t; i++) {
int gcd=e_gcd(M, a[i], x, y);
if ((b[i] - R) % gcd) return 0; //无整数解,根据题意确定返回无解的值
x = (b[i] - R) / gcd*x % (a[i] / gcd);
R += x*M;
M = M / gcd*a[i];
R=(R%M+M)%M;
}
//以上,最后R就是符合同余方程的最小整数解,M是除数a[]的最小公倍数,孙子定理模板
return R;
}
int main()
{
scanf("%lld",&t);
for(int i=0;i<t;i++)
{
scanf("%lld",&a[i]);
scanf("%lld",&b[i]);
}
ll sum=lmes();
printf("%lld\n",sum);
return 0;
}