多约束条件线性规划求解最优解 (python编程实现)

1 背景

我们用一个在营销场景下可能用到的例子来进行讲解。很多公司在营销策略中会考虑通过抵扣券发放给用户,进而刺激用户来消费。但是下发卡券是有成本的,一般每次营销预算成本是有限的,公司希望在固定的成本下刺激最多的用户人数去核销。我们就以这样一个场景为例,在有多个约束情况下,通过选择适当数量的卡券分配给各个用户群体,以最大化核销人数。这样的问题我们可以使用线性规划方法求解这个。

2 问题定义

2.1 输入

  • A[m][n]: 核销率矩阵,表示第i个用户群在第j张卡券的核销率
  • P[m]: 每个人群的总数量
  • G: 卡券的总成本预算
  • T[n]: 每个卡券的服务类型,假设我们有加油,洗车,充电三种服务,每种服务分别对应的值表示1,2,3,则该数组的每个元素取值范围为{1,2,3}
  • R[n]: 每张卡券的面额
  • wash_r: 投放给洗车券的人数不少于加油人数的比例
  • charge_r:投放给充电券的人数不少于加油人数的比例

2.2 输出

  • B[m][n]: 表示在第i个人群中投入第j张卡券的人数数量

2.3 目标

  • 最大化核销人数
    Maximize  Q = ∑ i = 0 m ∑ j = 0 n B [ i ] [ j ] \text{Maximize } Q = \sum_{i=0}^m \sum_{j=0}^n B[i][j] Maximize Q=i=0mj=0nB[i][j]

3 约束条件

  • 人群数量约束
    ∑ j = 0 n B [ i ] [ j ] ≤ P [ i ] , ∀ i \sum_{j=0}^nB[i][j] \leq P[i], \forall i j=0nB[i][j]P[i],i

  • 总成本约束
    ∑ i = 0 m ∑ j = 0 n B [ i ] [ j ] × A [ i ] [ j ] × R [ j ] ≤ G \sum_{i=0}^m \sum_{j=0}^n B[i][j] \times A[i][j] \times R[j] \leq G i=0mj=0nB[i][j]×A[i][j]×R[j]G

  • 服务类型人数比例约束
    计算每个服务的人群 w 1 , w 2 , w 3 , w 4 w_1, w_2, w_3, w_4 w1,w2,w3,w4:
    w 1 = ∑ j = 0 n ∑ i = 0 m B [ i ] [ j ] × A [ i ] [ j ] i f T [ j ] = = 1 w_1 = \sum_{j=0}^n\sum_{i=0}^m B[i][j] \times A[i][j] if T[j] ==1 w1=j=0ni=0mB[i][j]×A[i][j]ifT[j]==1
    w 2 = ∑ j = 0 n ∑ i = 0 m B [ i ] [ j ] × A [ i ] [ j ] i f T [ j ] = = 2 w_2 = \sum_{j=0}^n\sum_{i=0}^m B[i][j] \times A[i][j] if T[j] ==2 w2=j=0ni=0mB[i][j]×A[i][j]ifT[j]==2
    w 3 = ∑ j = 0 n ∑ i = 0 m B [ i ] [ j ] × A [ i ] [ j ] i f T [ j ] = = 3 w_3 = \sum_{j=0}^n\sum_{i=0}^m B[i][j] \times A[i][j] if T[j] ==3 w3=j=0ni=0mB[i][j]×A[i][j]ifT[j]==3
    人数比例约束:
    w 1 > 0 , w 2 > 0 , w 3 > 0 w_1 >0, w_2>0, w_3>0 w1>0,w2>0,w3>0
    w 2 ≥ w a s h _ r × w 1 w_2 \ge wash\_r \times w_1 w2wash_r×w1
    w 3 ≥ c h a r g e _ r × w 1 w_3 \ge charge\_r \times w_1 w3charge_r×w1

4 求解方法

可以==使用线性规划(Linear Programming, LP)或整数线性规划(Integer Linear Programming, ILP)==来求解这个优化问题。考虑到𝐵[i][j]必须是整数(表示人数),ILP 可能是一个更合适的选择。可以使用 Python 的 PuLP 库来求解这个线性规划问题。具体实现代码如下:

################# 输入########################################
#1 核销率矩阵, 这里给出了一个5*3的矩阵,5个人群,在3张卡券的核销率情况
A = [[0.5,0.2,0.4],
     [0.3,0.02,0.19],
     [0.3,0.6,0.1],
     [0.10,0.13,0.55],
     [0.2,0.4,0.33]]
#2 每个人群的总数量
P = [10000,2000,500,5000,800]
#3 卡券的总成本数量
G = 15000
#3 卡券服务类型
T = [1,2,3]
#4 每张卡券的面额
R = [5,10,20]
#5 投放洗车的服务人数占比加油人数的比例
wash_r = 0.2
charge_r = 0.1
m = len(P)
n = len(R)

################# 求解########################################
#定义问题
prob = LpProblem("Maximize_Redemption_Rate", LpMaximize)
#定义决策变量
B = [[LpVariable(f'B_{i}_{j}', lowBound=0, cat='Integer') for j in range(n)] for i in range(m)]
#定义目标函数
prob += lpSum(B[i][j] * A[i][j] for i in range(m) for j in range(n))

#添加人群数量约束
for i in range(m):
    prob += lpSum(B[i][j] for j in range(n)) <= P[i]

#添加总成本约束
prob += lpSum(B[i][j] * A[i][j] * R[j] for i in range(m) for j in range(n)) <=G

#添加服务类型比例约束
#1 计算w1和w2
w1 = lpSum(B[i][j] for i in range(m) for j in range(n) if T[j] ==1)
w2 = lpSum(B[i][j] for i in range(m) for j in range(n) if T[j]==2)
w3 = lpSum(B[i][j] for i in range(m) for j in range(n) if T[j]==3)
#2 人数约束
prob += w1>=0
prob += w2>=0
prob += w3>=0
prob += w2>=wash_r*w1
prob += w3>=charge_r*w1

#求解问题
prob.solve()
#输出结果
B_optimal = [[B[i][j].varValue for j in range(n)] for i in range(m)]
print(B_optimal)

运行结果如下:
在这里插入图片描述
稍微验证了下输出的结果,都符合我们约束的要求。整体程序运行还是非常快的,我们可以根据实际的约束条件,稍微调整下代码就可以了。整体来说还是很方便的。

下面是一个使用Python实现单纯形方法求解线性规划的例子: ```python import numpy as np # 定义线性规划问题的系数矩阵和常数向量 A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = np.array([3, 6, 9]) c = np.array([1, 1, 1]) # 将线性规划问题转化为标准形式 m, n = A.shape A = np.hstack((A, np.eye(m))) c = np.concatenate((c, np.zeros(m))) basis = np.arange(n, n+m) # 构造初始可行解 x = np.zeros(n+m) x[basis] = np.linalg.solve(A[:, basis], b) # 单纯形法求解 max_iter = 1000 tolerance = 1e-8 for i in range(max_iter): # 计算单位贡献系数向量 cc = c[basis] cb = x[basis] cr = c - np.dot(cc, A) # 判断是否为最优解 if np.all(cr <= tolerance): break # 选择入基变量 j = np.argmin(cr) # 计算离基变量 d = np.linalg.solve(A[:, basis], A[:, j]) # 计算最小比值 ratios = cb / d ratios[d <= 0] = np.inf i = np.argmin(ratios) # 更新基向量 basis[i] = j x[basis] = np.linalg.solve(A[:, basis], b) # 输出最优解 print("Optimal solution: ", x[:n]) print("Optimal value: ", np.dot(c, x)) ``` 在这个例子中,我们首先定义了线性规划问题的系数矩阵和常数向量,然后将其转化为标准形式。接着,我们构造了初始可行解,并使用单纯形法进行迭代,直到找到最优解或达到最大迭代次数。最后,我们输出了最优解和最优值。 需要注意的是,在实际应用中,我们可能需要考虑到一些特殊情况,比如约束条件不满足可行性、目标函数为最大值等等。在编写代码时,需要根据具体情况进行相应的处理。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值