多约束条件线性规划求解最优解 (python编程实现)

1 背景

我们用一个在营销场景下可能用到的例子来进行讲解。很多公司在营销策略中会考虑通过抵扣券发放给用户,进而刺激用户来消费。但是下发卡券是有成本的,一般每次营销预算成本是有限的,公司希望在固定的成本下刺激最多的用户人数去核销。我们就以这样一个场景为例,在有多个约束情况下,通过选择适当数量的卡券分配给各个用户群体,以最大化核销人数。这样的问题我们可以使用线性规划方法求解这个。

2 问题定义

2.1 输入

  • A[m][n]: 核销率矩阵,表示第i个用户群在第j张卡券的核销率
  • P[m]: 每个人群的总数量
  • G: 卡券的总成本预算
  • T[n]: 每个卡券的服务类型,假设我们有加油,洗车,充电三种服务,每种服务分别对应的值表示1,2,3,则该数组的每个元素取值范围为{1,2,3}
  • R[n]: 每张卡券的面额
  • wash_r: 投放给洗车券的人数不少于加油人数的比例
  • charge_r:投放给充电券的人数不少于加油人数的比例

2.2 输出

  • B[m][n]: 表示在第i个人群中投入第j张卡券的人数数量

2.3 目标

  • 最大化核销人数
    Maximize  Q = ∑ i = 0 m ∑ j = 0 n B [ i ] [ j ] \text{Maximize } Q = \sum_{i=0}^m \sum_{j=0}^n B[i][j] Maximize Q=i=0mj=0nB[i][j]

3 约束条件

  • 人群数量约束
    ∑ j = 0 n B [ i ] [ j ] ≤ P [ i ] , ∀ i \sum_{j=0}^nB[i][j] \leq P[i], \forall i j=0nB[i][j]P[i],i

  • 总成本约束
    ∑ i = 0 m ∑ j = 0 n B [ i ] [ j ] × A [ i ] [ j ] × R [ j ] ≤ G \sum_{i=0}^m \sum_{j=0}^n B[i][j] \times A[i][j] \times R[j] \leq G i=0mj=0n

下面是一个使用Python实现单纯形方法求解线性规划的例子: ```python import numpy as np # 定义线性规划问题的系数矩阵和常数向量 A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = np.array([3, 6, 9]) c = np.array([1, 1, 1]) # 将线性规划问题转化为标准形式 m, n = A.shape A = np.hstack((A, np.eye(m))) c = np.concatenate((c, np.zeros(m))) basis = np.arange(n, n+m) # 构造初始可行解 x = np.zeros(n+m) x[basis] = np.linalg.solve(A[:, basis], b) # 单纯形法求解 max_iter = 1000 tolerance = 1e-8 for i in range(max_iter): # 计算单位贡献系数向量 cc = c[basis] cb = x[basis] cr = c - np.dot(cc, A) # 判断是否为最优解 if np.all(cr <= tolerance): break # 选择入基变量 j = np.argmin(cr) # 计算离基变量 d = np.linalg.solve(A[:, basis], A[:, j]) # 计算最小比值 ratios = cb / d ratios[d <= 0] = np.inf i = np.argmin(ratios) # 更新基向量 basis[i] = j x[basis] = np.linalg.solve(A[:, basis], b) # 输出最优解 print("Optimal solution: ", x[:n]) print("Optimal value: ", np.dot(c, x)) ``` 在这个例子中,我们首先定义了线性规划问题的系数矩阵和常数向量,然后将其转化为标准形式。接着,我们构造了初始可行解,并使用单纯形法进行迭代,直到找到最优解或达到最大迭代次数。最后,我们输出了最优解和最优值。 需要注意的是,在实际应用中,我们可能需要考虑到一些特殊情况,比如约束条件不满足可行性、目标函数为最大值等等。在编写代码时,需要根据具体情况进行相应的处理。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值