散射原理
- 在光学性质均匀的介质中或两种折射率不同的均匀介质的界面上,无论光的折射、反射或折射,都仅限于在特定的一些方向上,而在其他方向光强则等于零。我们沿光束的侧向观察就应当看不到光。但当光束通过光学性质不均匀的物质时,从侧向却可以看到光,这种现象叫做光的散射。
- 光每次碰到大块物质发生的事,都可以看作是一股光子流穿越悬浮在虚空中的原子阵列并与之相互作用而发生的合作事件。透射、反射和折射过程是发生在亚微观层级的散射的宏观表现。
- 散射实际上就是一个由核与电子组成的偶极子在外界的作用下发生了受迫简谐振动,从而发生了次级电磁波,而它的激发条件就是外来光波的交变电磁场。
瑞利散射实验
下图是观察散射光的装置示意图:
- 装置:从强光源S发出的强烈光束入射到装满水的玻璃容器,在水里加上几滴牛奶使之成为浑浊物质。
- 实验现象:光通过上述一类物质后发生散射。垂直于入射光的传播方向(z方向)观察时,散射光呈青蓝色,即比入射光含有较多的短波;迎着入射光的方向(x方向)观察,可看到通过容器的光显得比较红。定量的光谱分析表明,如果入射光强度按波长的分布可用函数 f ( λ ) f(\lambda) f(λ)来表示,则散射光的光强度的分布为 f ( λ ) λ − 4 f(\lambda)\lambda^{-4} f(λ)λ−4的形式。
瑞利散射原理
- 原子由一个质量很大的带正电的原子核和包围着原子核的一些电子组成。
- 电子被弹性地束缚在它们地平衡位置上,当这些电子在电场的作用下发生位移时,将有一个与位移成正比的恢复力作用在电子上,使电子恢复到它们的平衡位置。运动方程为:
m d 2 x d t 2 + k 0 x = − q E m\frac {d^2x} {dt^2} + k_0x = -qE mdt2d2x+k0x=−qE
或者
d 2 x d t 2 + ω 0 2 x = − q m E \frac {d^2x} {dt^2} + { {\omega}_0}^2x = -\frac q mE dt2d2x+ω02x=−mqE
其中 ω 0 = k 0