光纤学习 - OFDR(2) - 光纤光栅/光纤布拉格光栅(FBG)
光栅
由大量间距规律变化的平行狭缝构成的光学器件被成为光栅,其中最常见的是平行狭缝间距宽度相同的等间距光栅。
常用的等间距光栅大多数被刻写在玻璃片、金属片、塑料板上,刻痕可以是不透光的,也可以是部分透光的。但是两刻痕之间的光滑部分一般都是可以透光的。
精致的光栅在1cm宽度内刻有几千条乃至上万条刻痕,由于光栅栅距(光栅周期)与光波波长接近,因此其衍射光或者是透射光会产生光波的干涉现象。
其中利用透射光衍射的光栅称为透射光栅,利用两刻痕间的反射光衍射的光栅,如在镀有金属层的表面上刻出许多平行刻痕,两刻痕间的光滑金属面可以反射光,这种光栅称为反射光栅。
光纤光栅
把上述大量间距规律变化的平行狭缝利用光纤材料的光敏性刻写到光纤纤芯上,就构成了光纤光栅。
其中光栅栅距(光栅周期)均匀一致的光纤光栅被成为布拉格光栅(FBG),布拉格光栅的反射波非常小;布拉格光纤光栅的反射点之间的距离总是相等的。光栅包括了无数个可反射特定波长的反射点。
布拉格光纤光栅结构示意图与实物图如下所示:
光纤光栅串
光纤光栅(FBG)使用灵活的一个表现就是可以实现多点传感,理论上可以在一根传感器里刻写无数个不同波长的光纤光栅(FBG),实现对同一或多个物理参量的分布式检测,刻写了多个光纤光栅的光纤被成为光纤光栅串(FBGs)。具体实物图如下所示:
光纤光栅原理(FBG光纤光栅传感原理)
通过精准匹配两个反射点的距离,符合布拉格条件的光波信号被光栅反射,而其他波长信号基本不被反射。
布拉格条件:光波以特定角度入射并满足以下公式时发生的建设性干涉现象:
n λ = 2 d s i n θ n\lambda=2dsin{\theta} nλ=2dsinθ
其中:
- n n n是一个整数,代表干涉级次;
- λ \lambda λ是光波在介质中的波长;
- d d d是反射面之间的距离或者是周期性结构的周期;
- θ \theta θ是入射角,即入射光线与反射面法线之间的夹角。
当上述条件得到满足时,不同路径上的光波将会同相叠加,从而增强特定方向上的反射光强度。
通过连接光纤光栅解调仪,可以测定独立反射波的光波波长。一旦光纤布拉格光栅遭受应力或温度变化影响,光栅栅距就会发生变化,反射波的光波波长也会随之改变,并且反射不同的波长,这样布拉格波长变化就可以被测量了。
- BBS:宽带光源
- OSA:光谱分析仪