张量投票:
(注:下文中的“点”指的是,用传感器模型获得的环境的离散化表示,如用激光雷达获取的点云,或者是把双目相机的图像转换得到的点云等)
Stumm等【1】人提出张量投票是一种获得密集几何信息的方法。基本上,张量投票通过点投票提取几何基元(例如平面、直线和球体)和相关的显著性(这里理解为:是某种几何基元的可能性大小)。
这个过程通常分为两步:首先,假设点是球体,它们之间进行投票,以获得局部结构的第一个想法/理解(稀疏投票);然后,提取的张量根据其形状和显著性进行投票,为每一个张量生成密集的网格图。结果是一个3D网格,其中每个单元格都包含每个张量的显著性和参数(例如:平面的法线,或直线的主方向)
一种张量投票的应用:
Colas等【2】主要结果是了解每个单元格是否存在局部平面,如果有,还需要知道它的方向。同时结合其他机器人约束,判断是否是适合机器人行走的平面。
下图是Colas等在楼层进行自主导航的示意图(需要在三维空间中判断出可以供机器人行走的平面)
参考文献:
【1】E. Stumm, A. Breitenmoser, F. Pomerleau, C. Pradalier, and R. Siegwart, “Tensor-voting-based navigation for robotic inspection of 3D surfaces using lidar point clouds,” The International Journal of Robotics Research, vol. 31, no. 12, pp. 1465–1488, Nov. 2012.
【2】Colas F , Mahesh S , Pomerleau F , et al. 3D path planning and execution for search and rescue ground robots[C]// IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE, 2013.
【3】同步发布于知乎问题回答:
@meng