【莫比乌斯反演】[HAOI2011]Problem b

题目链接

P2522 [HAOI2011]Problem b

题目大意

求:

∑ i = x n ∑ j = y m [ gcd ⁡ ( i , j ) = k ] \large\sum\limits_{i=x}^n\sum\limits_{j=y}^m[\gcd(i,j)=k] i=xnj=ym[gcd(i,j)=k]

题解

首先这是一个二维前缀和的形式,我们改写一下:

∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = k ] − ∑ i = 1 x − 1 ∑ j = 1 m [ gcd ⁡ ( i , j ) = k ] − ∑ i = 1 n ∑ j = 1 y − 1 [ gcd ⁡ ( i , j ) = k ] + ∑ i = 1 x − 1 ∑ j = 1 y − 1 [ gcd ⁡ ( i , j ) = k ] \large\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=k]-\large\sum\limits_{i=1}^{x-1}\sum\limits_{j=1}^m[\gcd(i,j)=k]-\large\sum\limits_{i=1}^n\sum\limits_{j=1}^{y-1}[\gcd(i,j)=k]+\large\sum\limits_{i=1}^{x-1}\sum\limits_{j=1}^{y-1}[\gcd(i,j)=k] i=1nj=1m[gcd(i,j)=k]i=1x1j=1m[gcd(i,j)=k]i=1nj=1y1[gcd(i,j)=k]+i=1x1j=1y1[gcd(i,j)=k]

定义 s ( n , m ) = ∑ i = 1 n ∑ j = 1 m [ gcd ⁡ ( i , j ) = k ] s(n,m)=\large\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\gcd(i,j)=k] s(n,m)=i=1nj=1m[gcd(i,j)=k],直接考虑求解 s ( n , m ) s(n,m) s(n,m)

枚举每一种 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j),令 i = i ′ k , j = j ′ k i=i^\prime k,j=j^\prime k i=ik,j=jk,得到:

∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ [ gcd ⁡ ( i , j ) = 1 ] \large\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}[\gcd(i,j)=1] i=1knj=1km[gcd(i,j)=1]

利用莫比乌斯反演 [ n = 1 ] = ∑ d ∣ n μ ( d ) [n=1]=\sum\limits_{d\mid n}\mu(d) [n=1]=dnμ(d),得到:

∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ gcd ⁡ ( i , j ) μ ( d ) \large\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}\sum\limits_{d\mid \gcd(i,j)}\mu(d) i=1knj=1kmdgcd(i,j)μ(d)

d d d 枚举 gcd ⁡ ( i , j ) \gcd(i,j) gcd(i,j) 的每一个因数,得:

∑ d = 1 n ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ μ ( d ) × [ d ∣ i    and    d ∣ j ] \large\sum\limits_{d=1}^n\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}\mu(d)\times[d\mid i\;\text{and}\;d\mid j] d=1ni=1knj=1kmμ(d)×[dianddj]

将所有式子各自归为:

∑ d = 1 n μ ( d ) ∑ i = 1 ⌊ n k ⌋ [ d ∣ i ] ∑ j = 1 ⌊ m k ⌋ [ d ∣ j ] \large\sum\limits_{d=1}^n\mu(d)\sum\limits_{i=1}^{\lfloor\frac{n}{k}\rfloor}[d\mid i]\sum\limits_{j=1}^{\lfloor\frac{m}{k}\rfloor}[d\mid j] d=1nμ(d)i=1kn[di]j=1km[dj]

这个时候继续照常处理,提出 d d d

∑ d = 1 n μ ( d ) ∑ i = 1 ⌊ n k d ⌋ [ 1 ∣ i ] ∑ j = 1 ⌊ m k d ⌋ [ 1 ∣ j ] \large \sum\limits_{d=1}^n\mu(d)\sum\limits_{i=1}^{\lfloor\frac{n}{kd}\rfloor}[1\mid i]\sum\limits_{j=1}^{\lfloor\frac{m}{kd}\rfloor}[1\mid j] d=1nμ(d)i=1kdn[1i]j=1kdm[1j]

所以式子等于:

∑ d = 1 n μ ( d ) ( ⌊ n k d ⌋ ⌊ m k d ⌋ ) \large \sum\limits_{d=1}^n\mu(d)\left(\left\lfloor\dfrac{n}{kd}\right\rfloor\left\lfloor\dfrac{m}{kd}\right\rfloor\right) d=1nμ(d)(kdnkdm)

因此整除分块即可,时间复杂度 O ( n ) \mathcal{O}(\sqrt{n}) O(n )

代码

//你 cnt=1 了吗?
#include<bits/stdc++.h>
#define mid ((l+r)>>1)
#define fir first
#define sec second
#define lowbit(i) (i&(-i))
using namespace std;
const int N=5e4+5;
const int inf=1e18;
struct edge{int to,nxt,l;};
inline int read(){
    char op=getchar();
    int w=0,s=1;
    while(op<'0'||op>'9'){
        if(op=='-') s=-1;
        op=getchar();
    }
    while(op>='0'&&op<='9'){
        w=(w<<1)+(w<<3)+op-'0';
        op=getchar();
    }
    return w*s;
}
//数论部分
const double pi=acos(-1);
const int mod=1e18-11;
int Mul(int a,int b){return (a%mod*b%mod)%mod;}
int Add(int a,int b){return (a+b)%mod;}
int Dec(int a,int b){return (a-b+mod)%mod;}
int Pow(int a,int k){
    int ans=1;
    while(k){
        if(k&1) ans=Mul(ans,a);
        a=Mul(a,a);
        k>>=1;
    }
    return ans;
}
int gcd(int x,int y){return y==0?x:gcd(y,x%y);}
int lcm(int x,int y){return x/gcd(x,y)*y;}
int inv(int x){return Pow(x,mod-2);}
void exgcd(int a,int b,int &x,int &y){
    if(b==0){
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
}
int n,m,mu[N],vis[N],p[N],sum[N],cnt=0,k;
void mobius(){
    mu[1]=1;
    for(register int i=2;i<=N-5;i++){
        if(!vis[i]){
            mu[i]=-1;
            p[++cnt]=i;
        }
        for(register int j=1;j<=cnt&&p[j]*i<=N-5;j++){
            vis[i*p[j]]=1;
            if(i%p[j]==0){
                mu[i*p[j]]=0;
                break;
            }
            mu[i*p[j]]=-mu[i];
        }
    }
    for(register int i=1;i<=N-5;i++) sum[i]=sum[i-1]+mu[i];
}
long long Sqrt(int n,int m){
    if(!n||!m) return 0;
    int l=1,r;
    long long ans=0;
    for(l=1;l<=min(n,m);l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans+=(long long)(sum[r]-sum[l-1])*(n/(l*k))*(m/(l*k));
    }
    return ans;
}
signed main(){
    mobius();
    int T=read();
    while(T--){
        int x=read(),n=read(),y=read(),m=read();
        k=read();
        printf("%lld\n",Sqrt(n,m)-Sqrt(x-1,m)-Sqrt(n,y-1)+Sqrt(x-1,y-1));
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值