矩阵分析 研究生第一课

定义1

多项式矩阵的基本运算(子式****, ***, 伴随矩阵*, )

数域定义:设F是一个数环,如果对任意的a,b∈F而且a≠0,则b/a∈F;则称F是一个数域.例如有理数集Q、实数集R、复数集C等都是数域. 显然没有整数域.
注:数环定义 设S是复数集的非空子集.如果S中的数对任意两个数的和、差、积仍属于S,则称S是一个数环.例如整数集Z就是一个数环,有理数集Q、实数集R、复数集C等都是数环.

为什么自然数集和整数集不是数域呢?
而有理数集是数域?有理数不是包括自然数和整数吗?

因为自然数和整数不一定存在逆元a*a(-1)=1 不满足这一条

首先,无理数乘以无理数不一定是无理数,根号5乘以根号5等于有理数5.
整数除以整数不一定是整数,例如3/5=0.6 都不满足数域关于加减乘除的封闭性.

定义2 多项式环

F 是一个数域 , λ 是一个文字 / 未定元 , F [ λ ] 表示 F ( 系数在 F 中取 )
所有关于 λ 的一元多项式的全体 , F [ λ ] F 上的一元多项式环 .
多项式运算
2
3
4
带余除法
定义3
多项式式矩阵/λ-矩阵
F 是一个数域 , λ 是一个文字 / 未定元 , F [ λ ] 是多项式环 , 若矩阵 A 的元素
λ 的多项式 , F [ λ ] 的元素 , 则称 A
λ - 矩阵 , 并把 A 写成 A ( λ ) .
附注
由于 F ⊂ F[ λ],
故数域 F 上的矩阵 数字矩阵 也是 λ - 矩阵 , 即数字矩阵是特殊的 λ- 矩阵
.
2
λ - 矩阵也有加法、减法、乘法、数量乘法运算 , 其定义及运算规律与
数字矩阵相同 .
3
对于 n × n λ - 矩阵 A ( λ ) , 同样有行列式 | A ( λ ) | , 它是一个 λ 的多项式 ,
且有
| A ( λ ) B ( λ ) | = | A ( λ ) | · | B ( λ ) | ,
其中 B ( λ ) 也为 n × n (n / ) λ - 矩阵 .
4
与数字矩阵一样 , λ - 矩阵也有子式的概念 . λ - 矩阵的各阶子式是 λ 的多
项式 .
多项式的表现形式
以多项式为元素的矩阵
以数字矩阵为系数的多项式
与多项式的相乘不同 , 多项式矩阵相乘不满足交换律 ; 其原因在于矩阵的乘
法不满足交换律 .
λ-矩阵的秩
λ - 矩阵 A ( λ ) 中有一个 r 阶子式不为零 , 而所有 r + 1 阶的子式 ( 若有的
) 皆为零 , 则称 A ( λ ) 的秩为 r , 记为 rank ( A ( λ )) = r r ( A ( λ )) = r .
可逆 λ-矩阵
一个 n × n λ - 矩阵 A ( λ ) 称为可逆的 , 如果有一个 n × n λ - 矩阵 B ( λ ) , 使
A ( λ ) B ( λ ) = B ( λ ) A ( λ ) = E ,
其中 E n 阶单位矩阵 , B ( λ ) A ( λ ) 的逆矩阵 ( 它是唯一的 ), 记作
A 1 ( λ ) .
可逆的 λ - 矩阵称为单模态矩阵 .
可逆 λ-矩阵的判定
一个 n × n λ - 矩阵 A ( λ ) 可逆 ⇔ | A ( λ ) | 是一个非零 常数 .
λ-矩阵的初等变换
  • 矩阵两行 () 互换位置; (同数字矩阵)
  • 矩阵的某一行 () 乘以非零常数 c; (同数字矩阵)
  • 矩阵的某一行 () 加另一行 () φ(λ) , φ(λ) 是一个多项式 . (
同于 数字矩阵 )
[ i , j ] 表示 i , j 两行 ( ) 互换 ;
2
[ i ( c )] 表示第 i ( ) 乘以非零数 c ;
3
i + j ( φ ( λ )) 表示把第 j ( ) φ ( λ ) 倍加到第 i ( ).
4
[ i , j ]
−−→ ,
[ i ( c )]
−−−−→ ,
i + j ( φ ( λ ))
−−−−−−−→ 表示行变换 ; −−→
[ i , j ]
, −−−−→
[ i ( c )]
, −−−−−−−→
i + j ( φ ( λ ))
表示列变换 .
行上列下
λ-矩阵的初等矩阵
乘初等矩阵与初等变换的关系 : 左乘变行 , 右乘变列
对一个 s × n λ
-
A(λ) 作一次初等行变换相当于在 A ( λ ) 的左边 乘上 ( 左乘 ) 相应的 s × s 的初等矩阵;
A ( λ ) 作一次初等列变换相当于在 A ( λ ) 的右边乘上 ( 右乘 ) 相应的 、 n × n 的初等矩阵
.
2
初等矩阵的可逆性
1
初等矩阵皆可逆 ,
p ( i , j ) 1
= p ( i , j ) ,
p ( i ( c ))^ 1
= p ( i (1/ c )),
p ( i , j ( φ ( λ ))) 1
= p ( i , j ( φ ( λ ))) .
2
初等矩阵的逆矩阵均为初等矩阵
等价 λ-矩阵
λ - 矩阵 A ( λ ) 能经过一系列 初等变换 化为 λ - 矩阵 B ( λ ) , 则称 A ( λ )
B ( λ ) 等价 .
λ-矩阵的对角化
λ - 矩阵 A ( λ ) 的左上角元素 a 11 ( λ ) , 0 , A ( λ ) 中至少有一个元素不能
被它整除 , 那么一定可以找到一个与 A ( λ ) 等价的矩阵 B ( λ ) , 它的左上角元
b 11 ( λ ) , 0 , deg ( b 11 ( λ )) < deg ( a 11 ( λ )) . ( b 11 ( λ ) 关于 λ 的次数严格小
a 11 ( λ ) 关于 λ 的次数 .)
λ-矩阵的Smith标准型
r 1 ,
d i ( λ ) , i = 1 , 2 , . . . , r , 是首项系数为 1 的多项式 ,
d i ( λ ) | d i + 1 ( λ ) , i = 1 , 2 , . . . , r 1 .
上述矩阵称为 λ - 矩阵 A ( λ ) Smith 标准形 .
详细见
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值