可逆矩阵性质总结_浅谈λ—矩阵与矩阵的若尔当标准形

本文详细探讨了可逆矩阵的性质,重点介绍了λ—矩阵和矩阵的若尔当标准形。内容包括可逆矩阵的定义、性质,以及如何通过初等变换求解矩阵的若尔当标准形,强调了若尔当块的特征和初等因子在矩阵理论中的重要作用。
摘要由CSDN通过智能技术生成

473c9504f30f08c09c46c147e7d22ae5.png

所谓

—矩阵,实际上我们并不陌生,在学习线性变换的特征值与特征向量时,我们引入了线性变换的特征矩阵
,其中
是数域
上的
维线性空间
中的线性变换
在某一组基
下的矩阵,这个特征矩阵
就是一个
—矩阵,接下来我们严格的讨论下究竟什么是
—矩阵。

在我们学习数字矩阵时,矩阵当中的每一个位置都放置一个数字元素,而如果将数字矩阵当中的数字全部替换成数域

上的一元多项式环
中的一元多项式
,那么对应得到的新的矩阵就称之为
—矩阵。我们在学习一元多项式的时候,教材上面特别说明了一元多项式
中的元素
为一个文字,所谓文字就是说这里的
有别于函数
中的变量
,在具体的需要时,可以将一元多项式
中的
替换成方阵
,或者线性变换
,但同时相应的一元多项式中的常数项
也要替换成矩阵
为单位矩阵)或者映射
为恒等映射)我个人认为一元多项式中的常数1代表的意思更应该是线性空间中的乘法单位元,之所以直接记成数字1也许是为了使用上的方便,而到了具体的问题时只需要将其替换成相应的乘法单位元即可。

上面这段话实际上想表达的意思是,一元多项式实际上是一个形式表达式,这个观点在教材中也提出过,但在笔者初学高等代数时一直不理解什么是所谓的形式表达式,直到后来遇到矩阵的多项式和线性变换的多项式后才逐渐理解了这样一种思想,我们不需要关心一元多项式中的

究竟是什么,我们只关心定义在一元多项式上面的运算下一元多项式所具有的运算性质,因此我们研究的是一元多项式的通用性质,无论其中的文字
替换成什么数学对象,它所具有的运算性质都是完全相同的,这就足够了。

上面我们给出的关于

—矩阵的定义是采用了北大版高等代数教材上面对
—矩阵的描述性定义,在这种定义下的
—矩阵的范围很广,但是我们真正使用到的
—矩阵中的一元多项式
实际上是我们所熟悉的一元多项式函数,这个细节我们在下面的讨论中默认如此。

由于一元多项式环

中的多项式之间的运算——加法、减法、乘法与数字之间的加、减、乘遵循同样的运算规律,因此,对于
—矩阵我们可以类似的定义
—矩阵之间的加法、数乘以及乘法,这些运算与数字矩阵具有完全相同的运算规律,因此我们就不在这里赘述了。同样的我们还可以定义
—矩阵所对应的行列式,它与数字矩阵的行列式具有完全相同的性质,例如, 对于
—矩阵的行列式,矩阵乘积的行列式等于行列式的乘积,这一结论同样是成立的。既然说到
—矩阵的行列式,那么必然也有
—矩阵的子式的概念,其与数字矩阵的子式的概念也是完全类似的,利用
—矩阵的子式的概念,我们可以给出下面的定义。

定义1:如果

—矩阵
中有一个
级子式不为零,任意的
级子式(如果有的话)全为零,则称
的秩为
,零矩阵的秩固定为零。

可以看出,这里对于

—矩阵的秩的定义方式是数字矩阵秩的定义的延续,并没有什么新鲜的内容。

定义2:一个

—矩阵
称为
可逆的,如果有一个
—矩阵
使
,这里的
级单位矩阵。

这里关于

—矩阵可逆的定义与数字矩阵中的可逆的矩阵的定义是类似的,在定义中其实是可以进行精简的,只需保证
我们都可以推导出另外的一个,在数字矩阵可逆的定义中同样如此,接下来我们给出下面的定理,由下面的这个定理我们就知道为什么我们可以对上面的定义进行精简。

定理1:一个

—矩阵
是可逆的充分必要条件是行列式
是一个非零的数。

证明:必要性是显然的,我们只需要对

两端同时取行列式,则有
,由于
都是
的多项式,由它们的乘积为1可推知它们都是零次多项式,也就是非零的常数。

接下来我们证明充分性,不妨设

是一个非零的常数,
的伴随矩阵,它也是一个
—矩阵,此时有
,由此可知
可逆。

由上面定理证明的必要性知,当满足

时即可推得
的行列式为非零的常数,再由上面定理的充分性知
均可逆,同理,由
也可推得这一结论,因此我们可以对定义2进行简化,更近一步的,如果有
,那么对等式两端同时右乘
,将得到
,同样的如果两端同时左乘
,即只要看到
这一关系成立,就可知
均可逆,且
互逆。

在数字矩阵中,一个数字矩阵可逆的充要条件为这个数字矩阵的行列式不为零,同样可以理解为数字矩阵可逆的充要条件为这个数字矩阵的行列式为一个非零的常数,乍一看

—矩阵可逆的充要条件也是如此,都论述为行列式是否为非零的常数,但仔细琢磨发现二者存在细微差别,在数字矩阵中,行列式的值必为常数,因此结果被划分成两种,要么行列式是非零常数——可逆,要么行列式为零——不可逆,但是
—矩阵的行列式的结果除了零和非零常数外还有另外一种结果——
的非零多项式,由于这一结果上的差异造就了
—矩阵在判断是否可逆时不能依赖于
—矩阵是否满秩来进行判断,因此我们得到下面的结论:

—矩阵
的秩为
可逆的必要不充分条件。

在数字矩阵中,我们定义了数字矩阵的三种初等行列变换,即

互换矩阵中任意两行(列)的位置;

将矩阵中的任意一行(列)乘以一个非零常数

将矩阵的任意一行(列)乘以任意一个常数后加到另外一行(列)上。

数字矩阵中的这三种初等行列变换本质上是对线性方程组的同解变换,并且容易证明这三种初等行列变换均为可逆变换,并且每一种行(列)初等变换都可以用对应的初等矩阵去左(右)乘该矩阵得到变换后的矩阵,且在矩阵变换的前后,矩阵的可逆性不发生改变。

仿照数字矩阵中初等变换的定义,我们给出

—矩阵所对应的初等行列变换的定义。

定义3:如下的三种行列变换称为

—矩阵的初等行列变换:

互换矩阵中任意两行(列)的位置;

将矩阵中的任意一行(列)乘以一个非零常数

将矩阵的任意一行(列)乘以任意
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值