数字图像处理(exam)

chapter 3 灰度变换与空间滤波

一些基本的灰度处理函数

强度变换 Intensity Transformation 转换函数T仅仅针对于单个像素进行变换操作
r处理前的像素值,s为处理后的像素值

线形函数(反转,恒等变换)
  1. 图像反转
    s = L − 1 − r s = L - 1 - r s=L1r
    可得到灰度级范围在[0,L-1]的一幅图像的反转图像,这种方法特别适用于增强嵌入在一幅图像的暗区域中的白色或者灰色细节,尤其是黑色面积占主导地位时。(例子:the breast image)
  2. 恒等变换
    s = r s = r s=r
对数函数(对数变换,反对数变换)

对数变换的通用形式为:c是一个常数,并假设r>=0
s = c log ⁡ ( 1 + r ) s = c\log(1+r) s=clog(1+r)
(联想对数函数的图像,其中横坐标是原始灰度级,纵坐标是目标灰度级)

  1. 对数变换
    使用对数变换来拓展图像中暗像素的值,同时压缩更高灰度级的值
  2. 反对数变换
    使用反对数变换来压缩图像中亮像素的值,同时压缩低灰度的值

对数变换有一个重要的特征,就是对数变换压缩像素值较大的图像的动态范围,对数变换将图像的低灰度值部分扩展,将其高灰度值部分压缩,以达到强调图像低灰度部分的目的;同时可以很好的压缩像素值变化较大的图像的动态范围,目的是突出我们需要的细节。反对数变换则与对数函数不同的是,强调的是图像的高灰度部分.

幂律函数(n次幂,n次根号变换)

基本形式:
s = c r γ s = cr^{\gamma} s=crγ
其中,c和 γ \gamma γ都是正常数,若是图像或者说是感兴趣的区域比较暗时,调整 0 < γ \gamma γ < 1 可以增强对比度,反之,若是图像或者说是感兴趣的区域比较亮时,则调整 γ \gamma γ > 1可以降低图片整体的对比度

分段线形变换函数

联想函数图像
对比拉伸 (r1,s1) (r2,s2) 若 r 1 < r 2 , s 1 < s 2 r1 < r2 , s1 < s2 r1<r2,s1<s2 则对比度拉伸,可以增强感兴趣的区域 , 若r1 = r2 则为阈值处理,产生一个二值图像
灰度切片 为了突出自己感兴趣的区域[ x1 , x2 ]

直方图处理

主要包括直方图均衡以及直方图匹配
若一幅图像的像素倾向于占据整个可能的灰度级并且分布均匀,则该图像有较高的对比度并且图像展示效果会相对好,于是便引出图像直方图均衡化,对图像会有很强的增强效果

  1. 直方图均衡
  2. 直方图匹配

空间滤波基础

卷积

w ( x , y ) ∗ f ( x , y ) = − ∑ s = − a a ∑ s = − b b w ( s , t ) f ( x − s , y − t ) w(x,y) * f(x,y) = -\sum_{s=-a}^a\sum_{s=-b}^bw(s,t)f(x-s,y-t) w(x,y)f(x,y)=s=aas=bbw(s,t)f(xs,yt)
其中负号表示反转,反转卷积核 w ( x , y ) 180度 w(x,y)\text{180度} w(x,y)180

平滑空间滤波器

平滑滤波器用于模糊处理以及降低噪声。

平滑线形滤波器(均值滤波器)

平滑线形空间滤波器使用滤波器模版确定的邻域内的像素的平均灰度代替图像的每一个像素的值。
平滑线形滤波器的主要作用是去除图像中不相关的一些细节,其中不相关是指与滤波器模版尺寸相比较小的像素区域

  1. 盒状滤波器(系数全部相等)
  2. 加权均值滤波器(系数不等,有相应的权重)
统计排序(非线形)滤波器

统计排序(非线形)滤波器使用滤波器模版确定的邻域内的像素的中值代替图像的每一个像素的值,也称之为中值滤波器。
统计排序滤波器对脉冲噪声(椒盐噪声)十分有效。

锐化空间滤波器

锐化空间滤波器的主要目的是突出灰度的灰度部分

  1. 一阶微分的锐化滤波器
    ∂ f ∂ x = f ( x + 1 ) − f ( x ) \frac{\partial f}{\partial x} = f(x+1) - f(x) xf=f(x+1)f(x)
  2. 二阶微分的锐化滤波器
    ∂ 2 f ∂ x 2 = f ( x + 1 ) + f ( x − 1 ) − 2 f ( x ) \frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x) x22f=f(x+1)+f(x1)2f(x)
    二阶微分在增强细节方面要比一阶微分好得多(思考书上的例子)
Laplace
  1. 一个二维图像的Laplace 算子
    ∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \nabla^2f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} 2f=x22f+y22f
    ∂ 2 f ∂ x 2 = f ( x + 1 , y ) + f ( x − 1 , y ) − 2 f ( x , y ) \frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y) x22f=f(x+1,y)+f(x1,y)2f(x,y)
    ∂ 2 f ∂ y 2 = f ( x , y + 1 ) + f ( x , y − 1 ) − 2 f ( x , y ) \frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y) y22f=f(x,y+1)+f(x,y1)2f(x,y)
    得到 \text{得到} 得到
    ∇ 2 f ( x , y ) = f ( x + 1 , y ) + f ( x − 1 , y ) + f ( x , y + 1 ) + f ( x , y − 1 ) − 4 f ( x , y ) \nabla^2f(x,y) = f(x+1,y) + f(x-1,y)+f(x,y+1) + f(x,y-1) - 4f(x,y) 2f(x,y)=f(x+1,y)+f(x1,y)+f(x,y+1)+f(x,y1)4f(x,y)
    Laplace对图像增强的额基本方法可以表示为:
    g ( x , y ) = f ( x , y ) + c [ ∇ 2 f ( x , y ) ] g(x,y) = f(x,y) + c[\nabla^2f(x,y)] g(x,y)=f(x,y)+c[2f(x,y)]
    其中c=1或-1
    由于拉普拉斯是一种微分算子,因此其应用强调的是图像中灰度的突变,并不强调灰度级缓慢变化的区域。将原图像与Laplace产生的图像叠加到一起可以复原背景特性并保持laplace锐化处理的效果。

chapter 4 频率域滤波

两个函数的卷积:
f ( x ) ∗ h ( x ) = ∫ − ∞ ∞ f ( ζ ) h ( t − ζ ) d ζ f(x) * h(x) = \int_{-\infty}^\infty f(\zeta)h(t-\zeta)d\zeta f(x)h(x)=f(ζ)h(tζ)dζ

一维傅立叶变换

离散形式:
F ( u ) = 1 M ∑ x = 0 M − 1 f ( x ) e − 2 π j u x / M F(u) = \frac{1}{M}\sum_{x=0}^{M-1}f(x)e^{-2\pi jux/M} F(u)=M1x=0M1f(x)e2πjux/M
逆变换:
f ( x ) = ∑ u = 0 M − 1 F ( u ) e 2 π j u x / M f(x) =\sum_{u=0}^{M-1}F(u)e^{2\pi jux/M} f(x)=u=0M1F(u)e2πjux/M

二维离散傅立叶变换

F ( u , v ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) e − j 2 π ( u x M + v y N ) F(u,v) =\frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1}f(x,y)e^{-j2\pi(\frac{ux}{M}+\frac{vy}{N})} F(u,v)=MN1x=0M1y=0N1f(x,y)ej2π(Mux+Nvy)

二维离散傅立叶逆变换

f ( x , y ) = ∑ u = 0 M − 1 ∑ v = 0 N − 1 F ( u , v ) e j 2 π ( u x M + v y N ) f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1}F(u,v)e^{j2\pi(\frac{ux}{M}+\frac{vy}{N})} f(x,y)=u=0M1v=0N1F(u,v)ej2π(Mux+Nvy)

二维离散傅立叶变换的一些性质

  1. 均值
    F ( 0 , 0 ) = 1 M N ∑ m = 1 M − 1 ∑ n = 1 N − 1 f ( x , y ) F(0,0) = \frac{1}{MN} \sum_{m=1}^{M-1}\sum_{n=1}^{N-1}f(x,y) F(0,0)=MN1m=1M1n=1N1f(x,y)

  2. 平移和旋转
    f ( x , y ) e 2 π j ( u 0 x M + v 0 y N ) = F ( u − u 0 , v − v 0 ) f(x,y)e^{2\pi j (\frac{u_0x}{M} + \frac{v_0y}{N})} = F(u-u_0,v-v_0) f(x,y)e2πj(Mu0x+Nv0y)=F(uu0,vv0)
    f ( x − x 0 , y − y 0 ) = F ( u , v ) e − 2 π j ( u 0 x M + v 0 y N ) f(x-x_0,y-y_0) =F(u,v) e^{-2\pi j (\frac{u_0x}{M} + \frac{v_0y}{N})} f(xx0,yy0)=F(u,v)e2πj(Mu0x+Nv0y)
    f ( r , θ + θ 0 ) < = > F ( w , ϕ + ϕ 0 ) f(r,\theta + \theta_0) <=> F(w,\phi +\phi_0) f(r,θ+θ0)<=>F(w,ϕ+ϕ0)

  3. 周期性
    二维傅立叶变换及其反变换在u方向与v方向上是无限周期的
    F ( u , v ) = F ( u + k 1 M , v ) = F ( u , v + k 2 N ) = F ( u + k 1 M , v + k 2 N ) F(u,v) = F(u+k_1M,v) = F(u,v+k_2N) = F(u+k_1M,v+k_2N) F(u,v)=F(u+k1M,v)=F(u,v+k2N)=F(u+k1M,v+k2N)
    f ( x , y ) = f ( x + k 1 M , y ) = f ( x , y + k 2 N ) = f ( x + k 1 M , y + k 2 N ) f(x,y) = f(x+k_1M,y) = f(x,y+k_2N) = f(x+k_1M,y+k_2N) f(x,y)=f(x+k1M,y)=f(x,y+k2N)=f(x+k1M,y+k2N)

  4. 对称性
    函数f(x,y)的傅立叶变换是共轭对称的,即
    F ∗ ( u , v ) = F ( − u , − v ) F^* (u,v) = F(-u,-v) F(u,v)=F(u,v)
    对称性:
    $$ ∣ F ( u , v ) ∣ = ∣ F ( − u , − v ) ∣ |F(u,v)| = |F(-u,-v)| F(u,v)=F(u,v)

  5. 卷积定理
    f ( x , y ) ∗ h ( x , y ) = ∑ m = 1 M − 1 ∑ n = 0 N − 1 f ( m , n ) h ( x − m , y − n ) f(x,y) * h(x,y) = \sum_{m=1}^{M-1}\sum_{n=0}^{N-1}f(m,n)h(x-m,y-n) f(x,y)h(x,y)=m=1M1n=0N1f(m,n)h(xm,yn)
    f ( x , y ) ∗ h ( x , y ) < = > F ( u , v ) H ( u , v ) f(x,y) * h(x,y) <=> F(u,v)H(u,v) f(x,y)h(x,y)<=>F(u,v)H(u,v)
    f ( x , y ) h ( x , y ) < = > F ( u , v ) ∗ H ( u , v ) f(x,y)h(x,y) <=> F(u,v) * H(u,v) f(x,y)h(x,y)<=>F(u,v)H(u,v)
    空间卷积的DFT是频率域中相应变换的乘积

  6. 高斯
    A 2 π σ 2 e − 2 π 2 σ 2 ( t 2 + z 2 ) < = > A e − μ 2 + v 2 2 σ 2 A2\pi\sigma^2e^{-2\pi^2\sigma^2(t^2+z^2)} <=> Ae^{-\frac{\mu^2+v^2}{2\sigma^2}} A2πσ2e2π2σ2(t2+z2)<=>Ae2σ2μ2+v2

  7. 线形
    a f ( x , y ) + b h ( x , y ) = a F ( u , v ) + b H ( u , v ) af(x,y) + bh(x,y) = aF(u,v) + b H(u,v) af(x,y)+bh(x,y)=aF(u,v)+bH(u,v)

  8. 微分特性

使用频率域滤波器平滑图像

  1. 理想低通滤波(ILPF)
    H ( u , v ) = H(u,v) = H(u,v)=
    其中 D 0 D_0 D0是一个常数D(u,v)表示(u,v)道频率域中心的距离
  2. 布特沃斯低通滤波
    截止频率位于距原点D0处的n阶布特沃斯低通滤波器(BLPF)的传递函数定义为
    H ( u , v ) = 1 1 + [ D ( u , v ) D 0 ] 2 n H(u,v) = \frac{1}{1+[\frac{D(u,v)}{D_0}]^{2n}} H(u,v)=1+[D0D(u,v)]2n1
    其与ILPF的不同,BLPF传递函数在通过频率和截止频率的选择上并没有选择使用尖锐、不连续的区分,而是采用更加的平滑传递函数的滤波器
  3. 高斯低通滤波
    高斯低通滤波(GLPF)函数表达式:
    H ( u , v ) = e − D 2 ( u , v ) 2 σ 2 H(u,v) = e^{-\frac{D^2(u,v)}{2\sigma^2}} H(u,v)=e2σ2D2(u,v)
    其中,D(u,v)是距频率矩形中心的距离,σ是关于中心的扩展度的度量。通过令σ=D0,我们可以在本节中使用其他滤波器的表示法来表示该滤波器
    H ( u , v ) = e − D 2 ( u , v ) 2 D 0 2 H(u,v) = e^{-\frac{D^2(u,v)}{2D_0^2}} H(u,v)=e2D02D2(u,v)
    其中,D0是截止频率,当D(u,v)=D0时,GLPF下降到其最大值的0.607处

使用频率域滤波器锐化图像

三种高通滤波器的特性类似于低通滤波器:
1.理想高通滤波器有明显振铃现象。
2.Butterworth高通滤波器较平滑,边缘失真小,二 阶Butterworth高通滤波器只有轻微振铃现象。
3.高斯高通滤波器没有振铃现象,完全平滑。

  1. 理想高通滤波
    $$$$
  2. 布特沃斯高通滤波
    H ( u , v ) = 1 1 + [ D 0 D ( u , v ) ] 2 n H(u,v) = \frac{1}{1+[\frac{D_0}{D(u,v)}]^{2n}} H(u,v)=1+[D(u,v)D0]2n1
  3. 高斯高通滤波
    H ( u , v ) = 1 − e − D 2 ( u , v ) 2 D 0 2 H(u,v) = 1-e^{-\frac{D^2(u,v)}{2D_0^2}} H(u,v)=1e2D02D2(u,v)
  4. 频率域的拉普拉斯算子
    频率域的拉普拉斯算子可以由如下滤波器实现:
    H ( u , v ) = − 4 π 2 ( u 2 + v 2 ) H(u,v) = -4\pi^2(u^2+v^2) H(u,v)=4π2(u2+v2)

chapter 5 图像复原与重建

图像退化以及复原过程的模型

H是一个线形的,位置不变的过程
空间域的退化图像由下式表示出:
g ( x , y ) = h ( x , y ) ∗ f ( x , y ) + η ( x , y ) g(x,y) = h(x,y) * f(x,y) + \eta(x,y) g(x,y)=h(x,y)f(x,y)+η(x,y)
h ( x , y ) h(x,y) h(x,y)是退化函数的空间表示, η ( x , y ) \eta(x,y) η(x,y)是噪声
等价的频率域表示为:
G ( u , v ) = H ( u , v ) ∗ F ( u , v ) + N ( u , v ) G(u,v) = H(u,v) * F(u,v) + N(u,v) G(u,v)=H(u,v)F(u,v)+N(u,v)
模型
f u n c t i o n function function

噪声模型

数字图像中,噪声的模型主要来源于图像的获取以及传输过程
缩写:概率密度函数(PDF)

  1. 高斯噪声
    p ( z ) = 1 2 π σ e − ( z − z ‾ ) 2 / 2 σ 2 p(z) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\overline{z})^2/2\sigma^2} p(z)=2π σ1e(zz)2/2σ2
    z表示灰度值, z ‾ \overline{z} z表示z的均值, σ \sigma σ表示标准差
  2. 瑞丽噪声
  3. 爱尔兰噪声(伽马噪声)
  4. 指数噪声
  5. 脉冲噪声(椒盐噪声)
  6. 周期噪声
随机数发生器

直接看题目

只存在噪声的复原

  1. 均值滤波器
    1. 算术均值滤波器
      f ^ ( x , y ) = 1 m n ∑ ( s , t ) ∈ S x y g ( s , t ) \hat{f}(x,y) = \frac{1}{mn}\sum_{(s,t)\in S_{xy}}g(s,t) f^(x,y)=mn1(s,t)Sxyg(s,t)
      模糊了结果,但是降低了噪声
    2. 几何均值滤波器
      f ^ ( x , y ) = [ ∏ ( s , t ) ∈ S x y g ( s , t ) ] 1 m n \hat{f}(x,y) = [\prod_{(s,t)\in S_{xy}}g(s,t)]^{\frac{1}{mn}} f^(x,y)=[(s,t)Sxyg(s,t)]mn1
      相比于算术均值滤波器而言,这种处理方法丢失的图像细节更少
    3. 谐波均值滤波器
      f ^ ( x , y ) = m n ∑ ( s , t ) ∈ S x , y 1 g ( s , t ) \hat{f}(x,y) = \frac{mn}{\sum_{(s,t)\in S_{x,y}} \frac{1}{g(s,t)}} f^(x,y)=(s,t)Sx,yg(s,t)1mn
      谐波均值滤波器对于盐噪声效果很好,但是不适用于胡椒噪声,它善于处理像高斯噪声那样的噪声
    4. 逆谐波均值滤波器
      f ^ ( x , y ) = ∑ ( s , t ) ∈ S x , y g ( s , t ) Q + 1 ∑ ( s , t ) ∈ S x , y g ( s , t ) Q \hat{f}(x,y) = \frac{\sum_{(s,t)\in S_{x,y}}g(s,t)^{Q+1}}{\sum_{(s,t)\in S_{x,y}}g(s,t)^Q} f^(x,y)=(s,t)Sx,yg(s,t)Q(s,t)Sx,yg(s,t)Q+1
      其中,Q称之为滤波器的阶数,当Q>0时,该滤波器消除胡椒噪声,当Q<0时,该滤波器消除盐噪声
  2. 统计排序滤波器
    1. 中值滤波器
      f ^ ( x , y ) = m e d i a n ( s , t ) ∈ S x y g ( s , t ) \hat{f}(x,y) = median_{(s,t)\in S_{xy}}{g(s,t)} f^(x,y)=median(s,t)Sxyg(s,t)
      中值滤波器的应用比较普遍,因为对于某些类型的随机噪声,它可以提供良好的去燥的能力,且比相同尺寸的线形平滑滤波器引起的模糊更少。存在单极或双极脉冲噪声的情况下,中值滤波很有效。
    2. 最大最小值滤波器
      f ^ ( x , y ) = m a x g ( s , t ) \hat{f}(x,y) = max g(s,t) f^(x,y)=maxg(s,t)
      最大值滤波器对于发现图片中的最亮点很有用,能够很好的处理胡椒噪声
      f ^ ( x , y ) = m i n g ( s , t ) \hat{f}(x,y) = min g(s,t) f^(x,y)=ming(s,t)
      最小值滤波能够很好的处理盐噪声
    3. 中点滤波器
      f ^ ( x , y ) = 1 2 [ m a x g ( s , t ) + m i n g ( s , t ) ] \hat{f}(x,y) =\frac{1}{2}[maxg(s,t) + ming(s,t)] f^(x,y)=21[maxg(s,t)+ming(s,t)]
      中点滤波器能够很好的处理随机噪声,例如高斯噪声和均匀噪声

用频率域滤波消除周期噪声

  1. 带阻滤波器
    阻止一定频率范围内的信号通过而允许其他频率范围内的信号通过。
  2. 带通滤波器
    允许一定频率范围内的信号通过而阻止其它频率范围内的信号通过。带通和带阻互补。

线形,位置不变的退化

线形移不变系统
加性:
均匀性:
空间不变性:
时间不变性:
满足上述条件的系统称之为时间\空间不变的线形系统
https://blog.csdn.net/Du_Shuang/article/details/82864286

估计退化函数

图像观察估计
试验估计
建模估计
建模估计就是利用图像形成的过程来建模仿真图像的模糊过程

最小均方误差滤波(维纳滤波)

1
2

约束最小二乘法滤波

chapter 6 彩色图像处理

彩色模型
  1. RGB
    R : red G : green B : blue
  2. CMY
    Cyan:青色 Magenta:洋红 Yellow:黄色
  3. CMYK
    Cyan:青色 Magenta:洋红 Yellow:黄色 K:打印黑色
  4. HSI
    Hue色调Saturation饱和度Intensity亮度I为RGB的Average
  5. YCbCr
    Y为颜色的亮度成分、而CB和CR则为蓝色和红色的浓度偏移量成份

chapter 7 小波与多分辨率处理

单独拉出来了

chapter 8 图像压缩

信息论中的五大概念

随机事件E,随机事件E的概率P(E)

  1. 信息量
    I ( E ) = log ⁡ 1 P ( E ) = − log ⁡ P ( E ) I(E) = \log\frac{1}{P(E)} = - \log P(E) I(E)=logP(E)1=logP(E)
  2. 信息熵
    H ( z ) = − ∑ j = 1 J P ( a j ) log ⁡ P ( a j ) H(z) = -\sum_{j=1}^J P(a_j)\log P(a_j) H(z)=j=1JP(aj)logP(aj)
  3. 条件信息熵
    H ( z ∣ b k ) = − ∑ j = 1 J p ( a j ∣ b k ) log ⁡ P ( a j ∣ b k ) H(z|b_k) = -\sum_{j=1}^J p(a_j|b_k) \log P(a_j|b_k) H(zbk)=j=1Jp(ajbk)logP(ajbk)
  4. 互信息
    I ( z , v ) = H ( z ) − H ( z ∣ v ) = ∑ j = 1 J ∑ k = 1 K P ( a j , b k ) log ⁡ P ( a j , b k ) P ( a j ) P ( b k ) I(z,v) = H(z) - H(z|v) = \sum_{j=1}^J\sum_{k=1}^K P(a_j,b_k) \log \frac{P(a_j,b_k)}{P(a_j)P(b_k)} I(z,v)=H(z)H(zv)=j=1Jk=1KP(aj,bk)logP(aj)P(bk)P(aj,bk)
  5. 信道的容量
    C = m a x z [ I ( z , v ) ] C = max_z[I(z,v)] C=maxz[I(z,v)]
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值