图像处理入门:图像增强之灰度变换

改善降质图像的方法:1.图像增强;2.图像复原

其中图像增强的主要内容如下:

也有人将空间域变换划分为:

灰度变换也被称为图像的点运算(只针对图像的某一像素点)是所有图像处理技术中最简单的技术,其变换形式如下:s=T(r)
其中,T是灰度变换函数;r是变换前的灰度;s是变换后的像素。
图像灰度变换的有以下作用:

  • 改善图像的质量,使图像能够显示更多的细节,提高图像的对比度(对比度拉伸)
  • 有选择的突出图像感兴趣的特征或者抑制图像中不需要的特征
  • 可以有效的改变图像的直方图分布,使像素的分布更为均匀

灰度变换函数描述了输入灰度值和输出灰度值之间变换关系,一旦灰度变换函数确定下来了,那么其输出的灰度值也就确定了。可见灰度变换函数的性质就决定了灰度变换所能达到的效果。用于图像灰度变换的函数主要有以下三种:

  • 线性变换 (图像反转)
  • 对数和反对数变换:扩展图像中的低灰度区域,压缩图像中的高灰度区域,能够增强图像中的暗色区域的细节;反对数变换与此相反。对数变换还有个重要作用是,能够压缩图像灰度值的动态范围,在傅立叶变换中能够显示更多的变换后的频谱细节。
  • 伽马变换:主要用于图像的校正,根据参数γγ的选择不同,能够修正图像中灰度过高(γ>1γ>1)或者灰度过低(γ<1)


上图给出了几种常见灰度变换函数的曲线图,根据这几种常见函数的曲线形状,可以知道这几种变换的所能达到的效果。例如,对数变换和幂律变换都能实现图像灰度级的扩展/压缩,另外对数变换还有一个重要的性质,它能压缩图像灰度值变换较大的图像的动态范围。

线性变换

令r为变换前的灰度,s为变换后的灰度,则线性变换的函数:s=a⋅r+b
其中,a为直线的斜率,b为在y轴的截距。选择不同的a,b值会有不同的效果:

  • a>1a>1,增加图像的对比度
  • a<1a<1,减小图像的对比度
  • a=1且b≠0a=1且b≠0,图像整体的灰度值上移或者下移,也就是图像整体变亮或者变暗,不会改变图像的对比度。
  • a<0且b=0a<0且b=0,图像的亮区域变暗,暗区域变亮
  • a=1且b=0a=1且b=0,恒定变换,不变
  • a=−1且b=255a=−1且b=255,图像反转。

在进行图像增强时,上述的线性变换函数用的较多的就是图像反转了,根据上面的参数,图像反转的变换函数为:s=255−s。图像反转得到的是图像的负片,能够有效的增强在图像暗区域的白色或者灰色细节。其效果如下:

图像反转的实现是比较简单的,在OpenCV中有对Mat的运算符重载,可以直接Mat r = 255 - img或者~img来实现。

对数变换

对数变换的通用公式是:s=clog(1+r)

其中,c是一个常数,假设r≥0,根据上图中的对数函数的曲线可以看出:对数变换,将源图像中范围较窄的低灰度值映射到范围较宽的灰度区间,同时将范围较宽的高灰度值区间映射为较窄的灰度区间,从而扩展了暗像素的值,压缩了高灰度的值,能够对图像中低灰度细节进行增强。从函数曲线也可以看出,反对数函数的曲线和对数的曲线是对称的,在应用到图像变换其结果是相反的,反对数变换的作用是压缩灰度值较低的区间,扩展高灰度值的区间。

对数变换,还有一个很重要的性质,能够压缩图像像素的动态范围。例如,在进行傅立叶变换时,得到的频谱的动态范围较大,频谱值的范围通常为[0,106][0,106],甚至更高。这样范围的值,显示器是无法完整的显示如此大范围的灰度值的,因而许多灰度细节会被丢失掉。而将得到的频谱值进行对数变换,可以将其动态范围变换到一个合适区间,这样就能够显示更多的细节。


左边为原图像,其拍摄环境较暗,无法分辨出很多的细节;右边为变换后的图像,整个图像明亮许多,也能分辨出原图中分辨出更多细节。

伽马变换:

伽马变换的公式为:,其中c和γ为正常数。
伽马变换的效果与对数变换有点类似,当γ>1时将较窄范围的低灰度值映射为较宽范围的灰度值,同时将较宽范围的高灰度值映射为较窄范围的灰度值;当γ<1时,情况相反,与反对数变换类似。其函数曲线如下:

当γ<1时,γ的值越小,对图像低灰度值的扩展越明显;当γ>1时,γγ的值越大,对图像高灰度值部分的扩展越明显。这样就能够显示更多的图像的低灰度或者高灰度细节。
伽马变换主要用于图像的校正,对灰度值过高(图像过亮)或者过低(图像过暗)的图像进行修正,增加图像的对比度,从而改善图像的显示效果。

直方图均衡化:

直方图均衡化的基本思想:把原始图的直方图变换为均匀分布的形式,这样就增加了像素灰度值的动态范围,从而达到增强图像整体对比度的效果。(变换后的图像的灰度级减少)

计算过程如下:

具体的实现流程如下:

使用的方法是灰度级变换:s = T(r) 

原理:

s=T(r) 0≤r≤1

T(r)满足下列两个条件:

(1)T(r)在区间0≤r≤1中为单值且单调递增

(2)当0≤r≤1时,0≤T(r) ≤1

条件(1)保证原图各灰度级在变换后仍保持从黑 到白(或从白到黑)的排列次序

条件(2)保证变换前后灰度值动态范围的一致性

Pr(r)是r的概率密度函数,Ps(s)是s的概 率密度函数,Pr(r)和T(r)已知,且T-1(s) 满足上述条件(1),所以有

已知一种重要的变换函数:

关于上限的定积分的导数就是该上限的积分值 (莱布尼茨准则)

对于离散值:

其中rk 是第k个灰度级,k = 0,1,2,…,L-1.

  nk是图像中灰度级为rk的像素个数.

  n是图像中像素的总数.

已知变换函数的离散形式为:

sk称作直方图均衡化 将输入图像中灰度级为rk(横坐标)的像素映射 到输出图像中灰度级为sk (横坐标)的对应像素得到.

展开阅读全文

没有更多推荐了,返回首页