图论之kruskal

最近新学了一个生成树算法,kruskal。

先给出一道纯模板题

传送门:http://codevs.cn/problem/1078/大意:给你一些边,你选一些边将所有点连成连通图,并且这些边的权值和最小,输出这个最小权值

思路:

首先我们知道,当我们选一些边所建的连通图为一个树时,图中的边数最少,也意味着我们所需的权值的个数最少,如果再能保证这些边的权值很小,那么我们的目的就完成了。

而完成上述思路,就需用到kruskal算法。

kruskal算法基于贪心思路,我们先把这些边依据输入顺序,开一个结构体存进去。然后将整个结构体依据权值关键字升序排序。

然后从权值最小的边开始,用并查集的方法,每一条边,查询他的根节点是否同一,若同一,证明他们已在同一棵树上,及它们之间已经联通,不需要再浪费一条边;而若不同一,则把起点的祖先的祖先设为终点的祖先,那么他们就连通了。这就是思路

代码如下:

#include<stdio.h>
#include<algorithm>
using namespace std;
struct edge{
	int u,v,w;
}a[10100];
int tot=0,fa[10100];
bool cmp(edge a,edge b)
{
	return a.w<b.w;
}
int find(int num)
{
	if(fa[num]==num)return num;
	return fa[num]=find(fa[num]);
}
int main()
{
	int ans=0,n,m=0;
	scanf("%d",&n);
	--tot;
	for(int i=1;i<=n;i++)
	{
	 for(int j=1;j<=n;j++)
	 {
	  int z;
	  scanf("%d",&z);
	  if(i<j)
	  {
	  a[++tot].u=i;
	  a[tot].v=j;
	  a[tot].w=z;
	  }
	 }
	 fa[i]=i;
	}
	sort(a,a+1+tot,cmp);
	for(int i=0;i<=tot&&m<n;i++)
	{
	 int x=find(a[i].u),y=find(a[i].v),z=a[i].w;
	 if(x==y)continue;
	 fa[x]=a[i].v;
	 ans+=z;
	 m++;
	}
	printf("%d",ans);
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值