最近新学了一个生成树算法,kruskal。
先给出一道纯模板题
传送门:http://codevs.cn/problem/1078/大意:给你一些边,你选一些边将所有点连成连通图,并且这些边的权值和最小,输出这个最小权值
思路:
首先我们知道,当我们选一些边所建的连通图为一个树时,图中的边数最少,也意味着我们所需的权值的个数最少,如果再能保证这些边的权值很小,那么我们的目的就完成了。
而完成上述思路,就需用到kruskal算法。
kruskal算法基于贪心思路,我们先把这些边依据输入顺序,开一个结构体存进去。然后将整个结构体依据权值关键字升序排序。
然后从权值最小的边开始,用并查集的方法,每一条边,查询他的根节点是否同一,若同一,证明他们已在同一棵树上,及它们之间已经联通,不需要再浪费一条边;而若不同一,则把起点的祖先的祖先设为终点的祖先,那么他们就连通了。这就是思路
代码如下:
#include<stdio.h>
#include<algorithm>
using namespace std;
struct edge{
int u,v,w;
}a[10100];
int tot=0,fa[10100];
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int find(int num)
{
if(fa[num]==num)return num;
return fa[num]=find(fa[num]);
}
int main()
{
int ans=0,n,m=0;
scanf("%d",&n);
--tot;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
int z;
scanf("%d",&z);
if(i<j)
{
a[++tot].u=i;
a[tot].v=j;
a[tot].w=z;
}
}
fa[i]=i;
}
sort(a,a+1+tot,cmp);
for(int i=0;i<=tot&&m<n;i++)
{
int x=find(a[i].u),y=find(a[i].v),z=a[i].w;
if(x==y)continue;
fa[x]=a[i].v;
ans+=z;
m++;
}
printf("%d",ans);
return 0;
}