博主是在Jupyter Notebooks上进行练习的,如果想知道如何创建Jupyter Notebooks,请点击这里
先展示要使用的数据:
import chart_studio.plotly as py
from plotly.offline import download_plotlyjs,init_notebook_mode,plot,iplot
import plotly.graph_objs as go
import pandas as pd
init_notebook_mode(connected=True)
df = pd.read_csv('2014_World_Power_Consumption')
df.head()
数据如下:
# locations: Either a name of a column in data_grame, or a pandas Series or array_like object.
# locationmode: One of 'ISO-3','USA-states', or 'country names' Determines the set of locations used to match entries in locations to regions on the map
data = dict(type = 'choropleth',
locations = df['Country'],
locationmode = 'country names',
z = df['Power Consumption KWH'],
text = df['Country'],
colorbar = {'title': 'Power Consumption KWH'})
layout = dict(title='2014 Power Consumption',
geo = dict(showframe=False, projection={'type':'mercator'}))
choromap = go.Figure(data=[data], layout=layout)
iplot(choromap, validate=False)
结果如下:
data = dict(type = 'choropleth',
locations = df['Country'],
colorscale = 'Viridis',
reversescale = True,
locationmode = 'country names',
z = df['Power Consumption KWH'],
text = df['Country'],
colorbar = {'title': 'Power Consumption KWH'})
layout = dict(title='2014 Power Consumption',
geo = dict(showframe=False, projection={'type':'mercator'}))
choromap = go.Figure(data=[data], layout=layout)
iplot(choromap, validate=False)
结果如下:
data = dict(type = 'choropleth',
locations = df['Country'],
colorscale = 'Viridis',
reversescale = True,
locationmode = 'country names',
z = df['Power Consumption KWH'],
text = df['Country'],
colorbar = {'title': 'Power Consumption KWH'})
layout = dict(title='2014 Power Consumption',
geo = dict(showframe=True, projection={'type':'mercator'}))
choromap = go.Figure(data=[data], layout=layout)
iplot(choromap, validate=False)
结果如下:
如果觉得不错,就点赞或者关注或者留言~~
谢谢~ ~