规定该有心斥力场中斥力满足的形式为
其中,为矢径的方向向量。
以有心力场中心为原点建立极坐标,质点在斥力场中运动极坐标方程如下所示
其中,参数和
参数的含义分别
其中为质点在有心斥力场中势能和动能之和,
为质点对有心力场中心的角动量。具体的可以看下图中的解释。
下面为推导过程

注意,为了使双曲线右焦点与有心斥力场中心重合,且双曲线左支恰好为质点运动的轨迹。我强行把不定积分得到的常数c确定为π。这个做法是可行的,就是考虑实际物理情况,舍去非物理解。
规定该有心斥力场中斥力满足的形式为
其中,为矢径的方向向量。
以有心力场中心为原点建立极坐标,质点在斥力场中运动极坐标方程如下所示
其中,参数和
参数的含义分别
其中为质点在有心斥力场中势能和动能之和,
为质点对有心力场中心的角动量。具体的可以看下图中的解释。
下面为推导过程
注意,为了使双曲线右焦点与有心斥力场中心重合,且双曲线左支恰好为质点运动的轨迹。我强行把不定积分得到的常数c确定为π。这个做法是可行的,就是考虑实际物理情况,舍去非物理解。