物理法求阿基米德螺旋线曲率半径

一、问题描述

已知阿基米德螺旋线在极坐标平面可以表示为r = \alpha \theta,其中\alpha为常实数。求任意角度\theta处的曲率半径。

阿基米德螺旋线

二、曲率半径的求解思路

当一质点沿着任意曲线运动并运动到曲线上A点时,其在A点的加速度可分解为切向和方向。法向加速度满足

a=v^{2} / \rho

其中v为质点沿着曲线运动的速率,\rho即为曲率半径。

构造一个运动,使质点以恒定且已知的速率v沿着阿基米德螺旋线运动,设法求出其在任意角度\theta的加速度,便能导出在任意任意角度的曲率半径。

这个运动是具有现实意义的,是符合事实的。试想,若存在一个阿基米德形的管道,从管道的一端以某一速率射入一个小球。那么,小球将以恒定的速率在管道中运动。

三、加速度的求解思路

思路和圆周运动一样。由于速度为矢量,将t时刻和t+dt时刻的速度矢量的起点平移到一起,并作差,将得到了速度的改变量dvdvdt的商(矢量)即为加速度矢量。

在我们预设的阿基米德螺旋线运动中,由于速率不变,也即速度矢量的模长不变,考察速度矢量方向改变的快慢即可。

四、绘制出小量三角形进行分析

某时刻,小球(质点)运动到A点,角位置为\theta 。经过dt的时间,小球运动的B点,角位置改变量为d\theta ,如下图所示。

 由此,我们能推出一下结论:

  1. r=\alpha \theta=OA=OC
  2. AC=d \theta OA=\theta d\theta r
  3. OB=\alpha (\theta+d \theta)
  4. BC=\alpha d \theta

注意到\angle CBA ,将其设为\angle a 。那么有:

\tan a = \frac{AC}{BC} =\theta 

由于A和B非常接近,可以认为AB的方向即为A点速度的方向(参考速度的定义)。那么,速度的角度\beta可以表示为

\beta = \theta + arctan(\theta)

同样,速度的模可以表示为AB的长度和时间微分dt的商,也即

v=\frac{AB}{dt}=\frac{BC}{dt \cos a } = \frac{\alpha d \theta}{dt \cos a }

其中,\cos a可以表示为

\cos a = \frac{1 } {​{({\theta}^{2}+1)}^{\frac{1}{2}}}

这样可以得出

\frac{d\theta}{dt}=\frac{v}{\alpha {({\theta}^{2}+1)}^{\frac{1}{2}}}

如果小球速率不变,那么其加速度的模等于其速度的模和角度变化率的乘积,如下图所示。

注意,小球速度矢量和极轴的夹角为\beta,对其关于时间求导

\frac{d\beta}{dt}=(1+\frac{1}{1+\theta ^2})\frac{d\theta}{dt}

于是,加速度可以求

a=v\cdot \frac{d\beta}{dt}=v^{2}\frac{\theta^2+2}{\alpha (\theta^2+1)^{\frac{3}{2}}}

所以,曲率半径可以表示为

\rho =\frac{v^2}{a}=\frac{\alpha(\theta ^2 +1)^{\frac{3}{2}}}{\theta ^2+2}

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值