2.5:模拟总结

前言

50pts
30+0+20
rnk19

把1000ms看成10s我也真是个人才。
T3自然溢出50带模数T成20有点离谱。
但倒没有因为WA失分。
就是菜罢了

考场

这次时间管理还是比较合理的。
乍看三题觉得T1似乎是个伞兵题
这离线下来可持久化数组二分一下不随便做?
请添加图片描述

能有甚么奇怪的原因,你就是不想让我得分。

T2乍一看又感觉可做了。
然后发现需要求权值的平方和。
先暴力枚举情况上轮廓线的话 n = 3 n=3 n=3 都感觉要T…
直接弃疗,本次满分200分。

T3想到了类似题解的那个定义。
然后这个问法肯定往SA上想啊。
但是它变来变去似乎直接求SA会出大问题。
然后就不会勒。
(补题的时候这个问题也没有解决qwq)
我会哈希!
服了 1040004000 1.5s跑不过去。

但是还是不是特别想写暴力。
还是对T1比较有想法。
瞅T1瞅到九点想法越来越少
然后就去敲 T3 暴力乐。
很好写半个小时写完了。
30min 50pts远超lb预期
怕锅还上了个双哈希。
不过那个题只要不自然溢出单双哈希都是会T的。
爱咋咋地吧。

此时还有2.5h
我就剩个暴力巨好写的T1了。
瞬间悠闲起来。
(既然暴力好写,这题其实还是应该先打个暴力,虽然这次没吃亏,但对拍还是写了个暴力,不如提前写了。)
一开始觉得可能是平衡树,但越想越觉得平衡树不可做。
开始lxl化想是否可以根号分治之类的神奇科技。
一开始按照常规根号分治思路,肯定要想修改集合大于根号如何小于根号如何。
发现修改集合大于根号根本没法如何。
然后灵光一闪觉得可以利用神奇的均摊对修改分块,忽略掉一些很垃圾的修改。
仔细想想还是挺可行的。
想想实现似乎是 O ( m f ( B ) log ⁡ m + m B m log ⁡ m ) O(mf(B)\log m+\dfrac{m}{B}m\log m) O(mf(B)logm+Bmmlogm)
每次贡献复杂度都会是观察者的变化量至少减少 1 B \frac{1}{B} B1 (上取整), f ( B ) f(B) f(B) 就是这个贡献次数。
打表发现卡成最差也就是 8 B − 9 B 8B-9B 8B9B 左右。而且除非对着我的算法和块长卡,否则根本卡不满。

在一看时间 10秒?那不过了?(大伏笔)

然后就愉快的开始敲。
后来由于感觉这个做法不是正解且出数据的人恐怕并不会想着卡,把 B B B 调成了 300 300 300 左右,复杂度往前倾斜一点,让后面稳定的重构复杂度低一些。

算是被 std::set 玩明白了,来回debug其实就一直在这件事上。
出考场:

请添加图片描述

啊焯

题目解析

T1

每次把变化量平均分成 k 份,有一份超了就重构,这样复杂度是 O ( m log ⁡ 1.5 t ) O(m\log_{1.5}t) O(mlog1.5t) 的。
你说它难吧看题解一点不难,你说它不难还就是想不到。
还是类似于利用 set 忽略修改,复杂度均摊的思路,但这个均摊靠谱多了。

T2

技巧题。
《变形》: f 2 ( x ) = f ( x ) ∗ f ( x ) f^2(x)=f(x)*f(x) f2(x)=f(x)f(x)
把问题转化为在同一种填数方案下(关键!)任务两种连边方案的方案数。
然后直接插头dp即可。
(补题发现这种轻插头dp其实挺好写的)

T3

蜜汁题目
正准备敲“现在也没明白”然后突然就想明白了并且去补完了本题
其实本题真是离正解很近了,唯一的障碍是我学了SA
关键是要灵活
本题由于特殊元素在不同的后缀中值不一样,用SA常规的倍增加基排是不可行的,因为基排的原理是基于值域的。
就给你两个后缀,让你比较字典序,怎么做?
哈希加二分啊!
我暑假的时候还用这个做法切过一个题,现在反而不会了(悲)
所以我们可以使用基于比较的快速排序,写一个复杂度 log ⁡ \log log 的cmp揉进去。
加上 std::sort log ⁡ \log log ,预处理总复杂度 n log ⁡ 2 n n\log^2n nlog2n
有了SA后面就简单了,直接二分找到SA数组里的左右端点中间的后缀均为答案。
注意一些超出结尾的细节。

总结

还是比较惨的一次考试
最近就没有不惨过
但是T1,3对题目的直觉与大方向都是对的。
题目虽然整体偏难,但也不是没有切题的机会(尤其T3)
明天加油吧!awa

代码

T1

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define ok debug("OK\n")
inline ll read(){
	ll x(0),f(1);char c=getchar();
	while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
	while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
	return x*f;
}
const int N=2e6+100;
const int M=2e4+100;

int n,m,tot;

struct node{
	ll w;
	int id;
	bool operator < (const node oth)const{
		if(w!=oth.w)return w<oth.w;
		else return id<oth.id;
	}
	bool operator > (const node oth)const{
		if(w!=oth.w)return w>oth.w;
		else return id>oth.id;
	}
	bool operator == (const node oth)const{
		return w==oth.w&&id==oth.id;
	}
};

multiset<node>s[N];
ll val[N],sum[N];
int p[N][5],k[N];
ll giv[N][5];
int lst;
int mem[N],num,ans[N];
void solve(int now,int op){
	ll lft=sum[now];
	for(int i=1;i<=k[now];i++) lft-=val[p[now][i]];
	if(op){
		for(int i=1;i<=k[now];i++){
			if(s[p[now][i]].find((node){giv[now][i],now})==s[p[now][i]].end()){
				debug("!\n");
				exit(0);
			}
			s[p[now][i]].erase(s[p[now][i]].find((node){giv[now][i],now}));
		}
	}
	if(lft<=0){
		ans[++lst]=now;
	}
	else{
		int w=lft/k[now];
		for(int i=1;i<=k[now];i++){
			int add=w;
			lft-=add;
			giv[now][i]=val[p[now][i]]+add;
			s[p[now][i]].insert((node){giv[now][i],now});
		}
	}
	return;
}

int tag[N];
signed main(){
	//#ifndef ONLINE_JUDGE
	freopen("obs.in","r",stdin);
	freopen("obs.out","w",stdout);
	
	//freopen("a.in","r",stdin);
	//freopen("a.out","w",stdout);
	//#endif
	n=read();m=read();
	for(int clo=1;clo<=m;clo++){
		int op=read();
		if(op==1){
			int now=++tot,t=read()^lst;k[now]=read();
			assert(k[now]<=3);
			for(int i=1;i<=k[now];i++){
				p[now][i]=read()^lst;sum[now]+=val[p[now][i]];
			}
			sum[now]+=t;
			solve(now,0);
		}
		else{
			int x=read()^lst,v=read()^lst;
			lst=0;num=0;
			val[x]+=v;
			for(node o:s[x]){
				if(o.w>val[x]) break;
				if(tag[o.id]!=clo) 
					mem[++num]=o.id;
				//assert(tag[o.id]!=clo);
				tag[o.id]=clo;
			}
			for(int i=1;i<=num;i++){
				solve(mem[i],1);
			}
			sort(ans+1,ans+1+lst);
			printf("%d ",lst);
			sort(ans+1,ans+1+lst);
			for(int i=1;i<=lst;i++) printf("%d ",ans[i]);
			puts("");
		}
		//lst=0;
	}
	return 0;
}
/*
5 10
1 9 3 3 4 5 
2 4 1
1 4 2 1 4 
1 4 3 1 2 3 
2 2 4
2 1 4
1 6 2 1 5 
2 1 2
1 4 1 3 
1 2 2 3 5 
*/
 

T2

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define ok debug("OK\n")
inline ll read(){
	ll x(0),f(1);char c=getchar();
	while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
	while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
	return x*f;
}
const int N=2e6+100;
const int M=2e4+100;
const int mod=998244353;

int n,m,tot;
int mp[75][8],mi[10];
ll f[2][150][150];
int num[3],st[3][10];

void init(){	
	mi[0]=1;
	for(int i=1;i<=8;i++){
		mi[i]=mi[i-1]<<1;
		//printf("i=%d mi=%d\n",i,mi[i]);
	}
	num[0]=1;num[1]=2;num[2]=1;
	st[0][1]=0;
	st[1][1]=1;st[1][2]=2;
	st[2][1]=3;
}

void work(){
	n=read();m=read();
	int S=mi[m+1]-1;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++) scanf("%d",&mp[i][j]);
	}
	memset(f,0,sizeof(f));
	int now=1,nxt=0;
	f[nxt][0][0]=1;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			swap(now,nxt);
			memset(f[nxt],0,sizeof(f[nxt]));
			for(int p=0;p<mi[m+1];p++){
				for(int q=0;q<mi[m+1];q++){
					if(!f[now][p][q]) continue;
					int n1=((p&mi[j-1])?1:0)+((p&mi[j])?1:0);
					int n2=((q&mi[j-1])?1:0)+((q&mi[j])?1:0);
					//printf("  p=%d q=%d n1=%d+%d n2=%d+%d\n",p,q,
					//(p&mi[j]),(p&mi[j+1]),((q&mi[j])?1:0),((q&mi[j+1])?1:0));
					//printf("  ?? %d&%d=%d\n",p,mi[j],p&mi[j]);
					for(int k=0;k<=4;k++){
						if(mp[i][j]!=-1&&mp[i][j]!=k) continue;
						int a=k-n1,b=k-n2;
						//printf("    k=%d a=%d b=%d\n",k,a,b);
						if(a<0||b<0) continue;
						for(int s=1;s<=num[a];s++){
							int np=(p&(S^(mi[j-1]|mi[j])))|(st[a][s]<<(j-1));
							for(int t=1;t<=num[b];t++){
								int nq=(q&(S^(mi[j-1]|mi[j])))|(st[b][t]<<(j-1));
								if(j==m){
									if((np&mi[m])||(nq&mi[m])) continue;
									np=(np<<1)&S;nq=(nq<<1)&S;
								}
								(f[nxt][np][nq]+=f[now][p][q])%=mod;
							}
						}
					}
				}
			}
			//for(int p=0;p<mi[m+1];p++){
			//	for(int q=0;q<mi[m+1];q++){
			//		if(f[nxt][p][q]){
			//			printf("(%d %d) p=%d q=%d f=%lld\n",i,j,p,q,f[nxt][p][q]);
			//		}
			//	}
			//}
			//puts("");
		}
	}
	printf("%lld\n",f[nxt][0][0]);
}

signed main(){
	freopen("grid.in","r",stdin);
	freopen("grid.out","w",stdout);
	init();
	int T=read();
	while(T--) work();
	return 0;
}
/*
1
1 2
1 1
*/
 

T3

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define ok debug("OK\n")
inline ll read(){
	ll x(0),f(1);char c=getchar();
	while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
	while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
	return x*f;
}
const int N=2e6+100;
const int M=2e4+100;

int n,m,tot;

ull h[N],Mi[N],key=100003;
int s[N],ss[N],nxt[N][10],pre[10];
void init_Hash(){
	Mi[0]=1;
	for(int i=1;i<=n;i++) Mi[i]=Mi[i-1]*key;
	for(int i=1;i<=n;i++) h[i]=h[i-1]*key+(s[i]+1);
	return;
}
inline ull Hash(int l,int r){
	return h[r]-h[l-1]*Mi[r-l+1];
}
int a[12],b[12],na,nb;
inline int Lcp(int x,int y){
	int st=0,ed=n-max(x,y)+1;
	while(st<ed){
		int mid=(st+ed+1)>>1;
		if(Hash(x,x+mid-1)==Hash(y,y+mid-1)) st=mid;
		else ed=mid-1;
	}
	return st;
}
inline int lcp(int x,int y){
	na=0;nb=0;
	for(int i=0;i<=9;i++){
		if(nxt[x][i]) a[++na]=nxt[x][i];
		if(nxt[y][i]) b[++nb]=nxt[y][i];
	}
	a[++na]=n+1;b[++nb]=n+1;
	sort(a+1,a+1+na);
	sort(b+1,b+1+nb);
	int res(0),pa=x-1,pb=y-1;
	for(int i=1;;i++){
		//printf("res=%d a=%d b=%d (%d %d) (%d %d)\n",res,a[i],b[i],pa+1,a[i]-1,pb+1,b[i]-1);
		if(max(a[i],b[i])==n+1||Hash(pa+1,a[i]-1)!=Hash(pb+1,b[i]-1)){
			//printf("  dif Lcp=%d\n",Lcp(pa+1,pb+1));
			return res+Lcp(pa+1,pb+1);
		}
		else{
			//printf("  ok\n");
			res+=a[i]-pa;
			pa=a[i];pb=b[i];
		}
	}
}
bool cmp(int x,int y){
	int o=lcp(x,y);
	//printf("cmp: (%d %d) o=%d %d %d\n",x,y,o,s[x+o],s[y+o]);
	if(x+o>n||y+o>n) return x>y;
	int u=x+o-s[x+o]>=x?s[x+o]:-1,v=y+o-s[y+o]>=y?s[y+o]:-1;
	//if(u==v){
	//	printf("(%d %d) o=%d u=%d v=%d\n",x,y,o,u,v);
	//}
	assert(u!=v);
	return u<v;
}
int sa[N],rk[N],height[N];
int mn[N][20],lg[N],mi[20];
void SA(){
	for(int i=1;i<=n;i++) sa[i]=i;
	sort(sa+1,sa+1+n,cmp);
	for(int i=1;i<=n;i++) rk[sa[i]]=i;
	for(int i=2;i<=n;i++) height[i]=lcp(sa[i-1],sa[i]);
}
void init_ST(){
	lg[0]=-1;
	for(int i=1;i<=n;i++) lg[i]=lg[i>>1]+1;
	mi[0]=1;
	for(int i=1;i<=lg[n];i++) mi[i]=mi[i-1]<<1;
	for(int i=1;i<=n;i++) mn[i][0]=height[i];
	for(int k=1;k<=lg[n];k++){
		for(int i=1;i+mi[k]-1<=n;i++) mn[i][k]=min(mn[i][k-1],mn[i+mi[k-1]][k-1]);
	}
	return;
}
inline int Min(int l,int r){
	int k=lg[r-l+1];
	return min(mn[l][k],mn[r-mi[k]+1][k]);
}
inline int Suf(int x,int len){
	int st=x,ed=n;
	while(st<ed){
		int mid=(st+ed+1)>>1;
		//printf("  (%d %d) mid=%d %d>=%d?\n",st,ed,mid,Min(x,mid),);
		if(Min(x+1,mid)>=len) st=mid;
		else ed=mid-1;
	}
	return st;
}
inline int Pre(int x,int len){
	if(height[x]<len) return x;
	int st=2,ed=x;
	while(st<ed){
		int mid=(st+ed)>>1;
		if(Min(mid,x)>=len) ed=mid;
		else st=mid+1;
	}
	return st-1;
}

signed main(){	
	freopen("similar.in","r",stdin);
	freopen("similar.out","w",stdout);
	n=read();m=read();
	for(int i=1;i<=n;i++){
		scanf("%1d",&ss[i]);
		int x=ss[i];
		s[i]=i-pre[x];
		for(int j=pre[x]+1;j<=i;j++) nxt[j][x]=i;
		pre[x]=i;
	}
	s[n+1]=-1;
	init_Hash();
	//for(int i=1;i<=n;i++) printf("%d",s[i]);
	//puts("");
	//for(int i=1;i<=n;i++){
	//	for(int j=i+1;j<=n;j++) printf("(%d %d) lcp=%d %d<%d?:%d\n",i,j,lcp(i,j),i,j,cmp(i,j));
	//}
	//printf("%d\n",cmp(6,7));exit(0);
	SA();
	//for(int i=1;i<=n;i++){
		//printf("i=%d sa=%d h=%d  ",i,sa[i],height[i]);
		//for(int j=sa[i];j<=n;j++) printf("%d",j-s[j]>=sa[i]?s[j]:0);
		//puts("");
	//}
	init_ST();
	int lst(0);
	for(int i=1;i<=m;i++){
		int l=read()^lst,r=read()^lst,len=r-l+1;
		int pos=rk[l];
		lst=Suf(pos,len)-Pre(pos,len)+1;
		//printf("  (%d %d) pos=%d (%d %d)\n",l,r,pos,Pre(pos,len),Suf(pos,len));
		printf("%d\n",lst);
		//lst=0;
	}
	return 0;
}
/*
1
1 2
1 1
*/
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值