最小生成树之prim算法的实现

prim算法的实现

void MiniSpanTree_Prim(MGraph G)
{
	int min, i, j, k;
	int adjvex[MAXVEX];		// 保存相关顶点下标
	int lowcost[MAXVEX];	// 保存相关顶点间边的权值
	
	lowcost[0] = 0;			// V0作为最小生成树的根开始遍历,权值为0
	adjvex[0] = 0;			// V0第一个加入
	
	// 初始化操作
	for( i=1; i < G.numVertexes; i++ )
	{
		lowcost[i] = G.arc[0][i];	// 将邻接矩阵第0行所有权值先加入数组
		adjvex[i] = 0;				// 初始化全部先为V0的下标
	}
	
	// 真正构造最小生成树的过程
	for( i=1; i < G.numVertexes; i++ )
	{
		min = INFINITY;		// 初始化最小权值为65535等不可能数值
		j = 1;
		k = 0;
		
		// 遍历全部顶点
		while( j < G.numVertexes )
		{
			// 找出lowcost数组已存储的最小权值
			if( lowcost[j]!=0 && lowcost[j] < min )
			{
				min = lowcost[j];
				k = j;		// 将发现的最小权值的下标存入k,以待使用。
			}
			j++;
		}
		
		// 打印当前顶点边中权值最小的边
		printf("(%d,%d)", adjvex[k], k);
		lowcost[k] = 0;		// 将当前顶点的权值设置为0,表示此顶点已经完成任务,进行下一个顶点的遍历
		
		// 邻接矩阵k行逐个遍历全部顶点
		for( j=1; j < G.numVertexes; j++ )
		{
			if( lowcost[j]!=0 && G.arc[k][j] < lowcost[j] )
			{
				lowcost[j] = G.arc[k][j];
				adjvex[j] = k;	
			}
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值