HYSBZ 2301 Promblem b 莫比乌斯反演+分块

题意

对于给出的 n 个询问,每次求有多少个数对 (x,y) ,满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k , gcd(x,y) 函数为 x 和 y 的最大公约数。
n, a, b, c, d, k都是1e5

思路

  1. 用容斥原理处理a ≤ x ≤ b , c ≤ y ≤ d的情况,即 bd - ad - bc + ac
  2. 用之前普通做法的复杂度为1e5,加上1e5次询问,总的复杂度是n2级别的,肯定要T
  3. 因为F(e)的值与n/e和m/e有关,所以值的种类是O(n)
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 4;
const int inf = 0x3f3f3f3f;
bool check[maxn+10];
int prime[maxn+10];
int mu[maxn+10];
int sum[maxn+10];
void Moblus(){
    memset(check,false,sizeof(check));
    mu[1] = sum[1] = 1;
    int tot = 0;
    for(int i = 2; i <= maxn; i++){
        if(!check[i]){
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot; j++){
            if(i * prime[j] > maxn) break;
            check[i * prime[j]] = true;
            if( i % prime[j] == 0){
                mu[i * prime[j]] = 0;
                break;
            }
            else{
                mu[i * prime[j]] = -mu[i];
            }
        }
        sum[i] = sum[i - 1] + mu[i];
    }
}
int a, b, c, d, k;
ll get_f1(int n, int m) {
    if (n > m) swap(n, m);
    ll ans = 0;
    for (int i = 1, last = 1; i <= n; i = last + 1) {
        last = min(n / (n / i), m / (m / i));
        ans += (ll)(sum[last] - sum[i - 1]) * (n / i) * (m / i);
    } 
    return ans;
}
int main(){
    int T;
    scanf("%d", &T); 
    Moblus();
    while(T--){
        scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
        a = (a - 1) / k;
        b /= k;
        c = (c - 1) / k;
        d /= k;
        ll f11 = get_f1(b, d);
        ll f12 = get_f1(a, c);
        ll f13 = get_f1(a, d);
        ll f14 = get_f1(b, c);
        ll f1 = f11 + f12 - f13 - f14;
        printf("%lld\n",f1);
    }
    return 0;
}
发布了4 篇原创文章 · 获赞 0 · 访问量 683
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览