【BZOJ】2301 Problem b

Problem b


题目链接


题目大意

    给你两个区间[a,b]和[c,d],让你求有多少个(x,y)满足:

gcd(x,y)=ka<=x<=bc<=y<=d


题解

莫比乌斯反演

    首先用容斥原理把问题分解成求:

[1,n][1,m]gcd(x,y)=1

    然后就是我们上一篇解决的问题了,具体可以看这里,上一篇写的很详细:莫比乌斯反演——BZOJ 2818


代码

#include <iostream>
#include <cstring>
#include <cstdio>
#define LL long long
#define maxn 50005

using namespace std;

int a,b,c,d,n,k,p[maxn],mu[maxn];
int cnt;
bool vis[maxn];

void setup(int high)
{
    mu[1]=1; cnt=0;
    for (int i=2;i<=high;i++)
    {
        if (!vis[i])
        {
            vis[i]=1; mu[i]=-1;
            p[cnt++]=i;
        }
        for (int j=0;j<cnt && i*p[j]<=high;j++)
        {
            vis[i*p[j]]=1;
            if (i%p[j]) mu[i*p[j]]=-mu[i];
            else
            {
                mu[i*p[j]]=0;
                break;
            }
        }
    }
    for (int i=1;i<=high;i++) mu[i]+=mu[i-1];
}

int solve(int n,int m)
{
    int p,ans=0,last=0;
    n/=k; m/=k;
    p=min(n,m);
    for (int i=1;i<=p;i=last+1)
    {
        last=min(n/(n/i),m/(m/i));
        ans+=(mu[last]-mu[i-1])*(n/i)*(m/i);
    }
    return ans;
}

int main()
{
    setup(maxn-5);
    int T;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("%d\n",solve(b,d)-solve(a-1,d)-solve(b,c-1)+solve(a-1,c-1));
    }
    return 0;
}
发布了215 篇原创文章 · 获赞 4 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览